ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Flux Expulsion in Star Formation

65   0   0.0 ( 0 )
 نشر من قبل Bo Zhao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bo Zhao




اسأل ChatGPT حول البحث

Stars form in dense cores of magnetized molecular clouds. If the magnetic flux threading the cores is dragged into the stars, the stellar field would be orders of magnitude stronger than observed. This well-known magnetic flux problem demands that most of the core magnetic flux be decoupled from the matter that enters the star. We carry out the first exploration of what happens to the decoupled magnetic flux in 3D, using an MHD version of the ENZO adaptive mesh refinement code. The field-matter decoupling is achieved through a sink particle treatment, which is needed to follow the protostellar accretion phase of star formation. We find that the accumulation of the decoupled flux near the accreting protostar leads to a magnetic pressure buildup. The high pressure is released anisotropically, along the path of least resistance. It drives a low-density expanding region in which the decoupled magnetic flux is expelled. This decoupling-enabled magnetic structure has never been seen before in 3D MHD simulations of star formation. It generates a strong asymmetry in the protostellar accretion flow, potentially giving a kick to the star. In the presence of an initial core rotation, the structure presents an obstacle to the formation of a rotationally supported disk, in addition to magnetic braking, by acting as a rigid magnetic wall that prevents the rotating gas from completing a full orbit around the central object. We conclude that the decoupled magnetic flux from the stellar matter can strongly affect the protostellar collapse dynamics.

قيم البحث

اقرأ أيضاً

100 - J.G. Elfritz , J.A. Pons , N. Rea 2015
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ iple permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, x-ray dim isolated neutron stars, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magneto-thermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.
236 - Jinhan Guo , Yuhao Zhou , Yang Guo 2021
As one of the main formation mechanisms of solar filament formation, the chromospheric evaporation-coronal condensation model has been confirmed by numerical simulations to explain the formation of filament threads very well in flux tubes with single dips. However, coronal magnetic extrapolations indicated that some magnetic field lines might possess more than one dip. It is expected that the formation process would be significantly different in this case compared to a single-dipped magnetic flux tube. In this paper, based on the evaporation-condensation model, we study filament thread formation in double-dipped magnetic flux tubes by numerical simulations. We find that only with particular combinations of magnetic configuration and heating, e.g., concentrated localized heating and a long magnetic flux tube with deep dips, can two threads form and persist in a double-dipped magnetic flux tube. Comparing our parametric survey with observations, we conclude that such magnetically connected threads due to multiple dips are more likely to exist in quiescent filaments than in active-region filaments. Moreover, we find that these threads are usually shorter than independently trapped threads, which might be one of the reasons why quiescent filaments have short threads. These characteristics of magnetically connected threads could also explain barbs and vertical threads in quiescent filaments.
Even when cooled through its transition temperature in the presence of an external magnetic field, a superconductor can expel nearly all external magnetic flux. This Letter presents an experimental study to identify the parameters that most strongly influence flux trapping in high purity niobium during cooldown. This is critical to the operation of superconducting radiofrequency cavities, in which trapped flux degrades the quality factor and therefore cryogenic efficiency. Flux expulsion was measured on a large survey of 1.3 GHz cavities prepared in various ways. It is shown that both spatial thermal gradient and high temperature treatment are critical to expelling external magnetic fields, while surface treatment has minimal effect. For the first time, it is shown that a cavity can be converted from poor expulsion behavior to strong expulsion behavior after furnace treatment, resulting in a substantial improvement in quality factor. Future plans are described to build on this result in order to optimize treatment for future cavities.
71 - H. Hotta , H. Iijima 2020
We investigate the rising flux tube and the formation of sunspots in an unprecedentedly deep computational domain that covers the whole convection zone with a radiative magnetohydrodynamics simulation. Previous calculations had shallow computational boxes (< 30 Mm) and convection zones at a depth of 200 Mm. By using our new numerical code R2D2, we succeed in covering the whole convection zone and reproduce the formation of the sunspot from a simple horizontal flux tube because of the turbulent thermal convection. The main findings are (1) The rising speed of the flux tube is larger than the upward convection velocity because of the low density caused by the magnetic pressure and the suppression of the mixing. (2) The rising speed of the flux tube exceeds 250 m/s at a depth of 18 Mm, while we do not see any clear evidence of the divergent flow 3 hr before the emergence at the solar surface. (3) Initially, the root of the flux tube is filled with the downflows and then the upflow fills the center of the flux tube during the formation of the sunspot. (4) The essential mechanisms for the formation of the sunspot are the coherent inflow and the turbulent transport. (5) The low-temperature region is extended to a depth of at least 40 Mm in the matured sunspot, with the high-temperature region in the center of the flux tube. Some of the findings indicate the importance of the deep computational domain for the flux emergence simulations.
230 - S. Posen , G. Wu , E. Harms 2018
When a superconducting radiofrequency cavity is cooled through its critical temperature, ambient magnetic flux can become frozen in to the superconductor, resulting in degradation of the quality factor. This is especially problematic in applications where quality factor is a cost driver, such as in the CW linac for LCLS-II. Previously, it had been unknown how to prevent flux from being trapped during cooldown in bulk niobium cavities, but recent R&D studies showed near-full flux expulsion can be achieved through high temperature heat treatment and cooling cavities through the superconducting transition with a spatial thermal gradient over the surface. In this paper, we describe the first accelerator implementation of these procedures, in cryomodules that are currently being produced for LCLS-II. We compare the performance of cavities under different conditions of heat treatment and thermal gradient during cooldown, showing a substantial improvement in performance when both are applied, enabling cryomodules to reach and, in many cases, exceed a Q0 of ~3x10^10.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا