ترغب بنشر مسار تعليمي؟ اضغط هنا

Doubly resonant ultrachirped pulses

154   0   0.0 ( 0 )
 نشر من قبل J. G. Muga
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrachirped pulses for which the frequency chirp is of the order of the transition frequency of a two-level atom are examined. When the chirp is large enough, the resonance may be crossed twice, for positive and negative quadrature frequencies. In this scenario the analytic signal and quadrature decompositions of the field into amplitude and phase factors turn out to be quite different. The corresponding interaction pictures are strictly equivalent, but only as long as approximations are not applied. The domain of validity of the formal rotating wave approximation is dramatically enhanced using the analytic signal representation.

قيم البحث

اقرأ أيضاً

Spectrum of the doubly heavy tetraquarks, $bbbar qbar q$, is studied in a constituent quark model. Four-body problem is solved in a variational method where the real scaling technique is used to identify resonant states above the fall-apart decay thr esholds. In addition to the two bound states that were reported in the previous study we have found several narrow resonant states above the $BB^*$ and $B^*B^*$ thresholds. Their structures are studied and are interpreted by the quark dynamics. A narrow resonance with spin-parity $J^P=1^+$ is found to be a mixed state of a compact tetraquark and a $B^*B^*$ scattering state. This is driven by a strong color Coulombic attraction between the $bb$ quarks. Negative-parity excited resonances with $J^P=0^-$, $1^-$ and $2^-$ form a triplet under the heavy-quark spin symmetry. It turns out that they share a similar structure to the $lambda$-mode of a singly heavy baryon as a result of the strongly attractive correlation for the doubly heavy diquark.
We present a systematic approach based on Bloch vectors treatment and the Magnus quantum electrodynamical formalism to study qubit manipulation by a train of pulses. These investigations include one of the basic processes involved in quantum computat ion. The concrete calculations are performed for tunneling quantum dynamics, multiple resonance and off-resonance excitations of qubit driven by Gaussian pulses. In this way, the populations of qubit states due to multiple resonant interactions are investigated for various operational regimes including: single-pulse excitation, two-pulse excitation with phase shift between pulse envelopes being controlling parameter and for excitation with sequential pulses. In the last case, we demonstrate the formation of quasienergetic states and quasienergies of qubit driven by train of identical pulses. In this case the transition probability of qubit exhibits aperiodic oscillations, but also becomes periodically regular for definite values of the quasienergy.
We propose a new protocol to implement ultra-fast two-qubit phase gates with trapped ions using spin-dependent kicks induced by resonant transitions. By only optimizing the allocation of the arrival times in a pulse train sequence the gate is impleme nted in times faster than the trapping oscillation period $T<2pi/omega$. Such gates allow us to increase the number of gate operations that can be completed within the coherence time of the ion-qubits favoring the development of scalable quantum computers.
Exact four-photon resonance of collinear planar laser pulses is known to be prohibited by the classical dispersion law of electromagnetic waves in plasma. We show here that the renormalization produced by an arbitrarily small relativistic electron no nlinearity removes this prohibition. The laser frequency shifts in collinear resonant four-photon scattering increase with laser intensities. For laser pulses of frequencies much greater than the electron plasma frequency, the shifts can also be much greater than the plasma frequency and even nearly double the input laser frequency at still small relativistic electron nonlinearities. This may enable broad range tunable lasers of very high frequencies and powers. Since the four-photon scattering does not rely on the Langmuir wave, which is very sensitive to plasma homogeneity, such lasers would also be able to operate at much larger plasma inhomogeneities than lasers based on stimulated Raman scattering in plasma.
We describe a superconducting circuit consisting of a Josephson junction in parallel with a quantum phase slip wire, which implements a Hamiltonian that is periodic in both charge and flux. This Hamiltonian is exactly diagonalisable in a double-Bloch band, and the eigenstates are shown to be code states of the Gottesman-Kitaev-Preskill quantum error correcting code. The eigenspectrum has several critical points, where the linear sensitivity to external charge and flux noise vanishes. The states at these critical points thus hold promise as qubit states that are insensitive to external noise sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا