ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Signals from Gravitational Wave Detectors with Instantaneous Time-Frequency Maps

276   0   0.0 ( 0 )
 نشر من قبل Alexander Stroeer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time- amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences, and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a chi-square goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.



قيم البحث

اقرأ أيضاً

Searches for continuous gravitational waves from unknown sources attempt to detect long-lasting gravitational radiation by identifying Doppler-modulated signatures in the data. Semicoherent methods allow for wide parameter space surveys, identifying interesting regions to be followed up using more sensitive (and computationally expensive) tools. Thus, it is required to properly understand the parameter space structure under study, as failing to do so could significantly affect the effectiveness of said strategies. We introduce a new measure for distances in parameter space suited for semicoherent continuous wave searches. This novel approach, based on comparing time-frequency tracks, can be applied to any kind of quasi-monochromatic continuous wave signals and adapts itself to the underlying structure of the parameter space under study. In a first application to the post-processing stage of an all-sky search for continuous waves from neutron stars in binary systems, we demonstrate a search sensitivity improvement by solely replacing previous ad hoc distance measures in the candidate clustering procedure by the new proposal.
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m assive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers, computational demands in gravitational-wave astronomy are expected to grow by at least a factor of two over the next five years as the global network of kilometer-scale interferometers are brought to design sensitivity. With the increase in detector sensitivity, real-time delivery of gravitational-wave alerts will become increasingly important as an enabler of multi-messenger followup. In this work, we report a novel implementation and deployment of deep learning inference for real-time gravitational-wave data denoising and astrophysical source identification. This is accomplished using a generic Inference-as-a-Service model that is capable of adapting to the future needs of gravitational-wave data analysis. Our implementation allows seamless incorporation of hardware accelerators and also enables the use of commercial or private (dedicated) as-a-service computing. Based on our results, we propose a paradigm shift in low-latency and offline computing in gravitational-wave astronomy. Such a shift can address key challenges in peak-usage, scalability and reliability, and provide a data analysis platform particularly optimized for deep learning applications. The achieved sub-millisecond scale latency will also be relevant for any machine learning-based real-time control systems that may be invoked in the operation of near-future and next generation ground-based laser interferometers, as well as the front-end collection, distribution and processing of data from such instruments.
General Relativity predicts only two tensor polarization modes for gravitational waves while at most six possible polarization modes of gravitational waves are allowed in the general metric theory of gravity. The number of polarization modes is total ly determined by the specific modified theory of gravity. Therefore, the determination of polarization modes can be used to test gravitational theory. We introduce a concrete data analysis pipeline for a single space-based detector such as LISA to detect the polarization modes of gravitational waves. Apart from being able to detect mixtures of tensor and extra polarization modes, this method also has the added advantage that no waveform model is needed and monochromatic gravitational waves emitted from any compact binary system with known sky position and frequency can be used. We apply the data analysis pipeline to the reference source J0806.3+1527 of TianQin with 90-days simulation data, and we show that $alpha$ viewed as an indicative of the intrinsic strength of the extra polarization component relative to the tensor modes can be limited below 0.5 for LISA and below 0.2 for Taiji. We investigate the possibility to detect the nontensorial polarization modes with the combined network of LISA, TianQin and Taiji and find that $alpha$ can be limited below 0.2.
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an alytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا