ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon- photoluminescence excitation spectroscopy of single quantum-dots

173   0   0.0 ( 0 )
 نشر من قبل Yael Benny
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogenerates a coherent single exciton state. The second laser is tuned to biexciton resonances. By scanning the energy of the second laser for various polarizations of the two lasers, while monitoring the emission from the biexciton and exciton spectral lines, we map the biexciton photoluminescence excitation spectra. The resonances rich spectra of the second photon absorption are analyzed and fully understood in terms of a many carrier theoretical model which takes into account the direct and exchange Coulomb interactions between the quantum confined carriers.



قيم البحث

اقرأ أيضاً

We present rigorous and intuitive master equation models to study on-demand single photon sources from pulse-excited quantum dots coupled to cavities. We consider three methods of source excitation: resonant pi-pulse, off-resonant phonon-assisted inv ersion, and two-photon excitation of a biexciton-exciton cascade, and investigate the effect of the pulse excitation process on the quantum indistinguishability, efficiency, and purity of emitted photons. By explicitly modelling the time-dependent pulsed excitation process in a manner which captures non-Markovian effects associated with coupling to photon and phonon reservoirs, we find that photons of near-unity indistinguishability can be emitted with over 90% efficiency for all these schemes, with the off-resonant schemes not necessarily requiring polarization filtering due to the frequency separation of the excitation pulse, and allowing for very high single photon purities. Furthermore, the off-resonant methods are shown to be robust over certain parameter regimes, with less stringent requirements on the excitation pulse duration in particular. We also derive a semi-analytical simplification of our master equation for the off-resonant drive, which gives insight into the important role that exciton-phonon decoupling for a strong drive plays in the off-resonant phonon-assisted inversion process
We employ active feedback to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic standard. The transmission of a single, rubidium-based Faraday filter serves as the error signal for frequency stabilization to l ess than 1.5% of the emission linewidth. Long-term stability is demonstrated by Hong-Ou-Mandel interference between photons from the two quantum dots. The observed visibility of $V_{mathrm{lock}}=(41 pm 5)$% is limited only by internal dephasing of the dots. Our approach facilitates quantum networks with indistinguishable photons from distributed emitters.
230 - W. Geng 2015
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities a re good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency {eta}a = 10-4 only 50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.
In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of cons ecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.
We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the measured splitting varies smoothly as a function of confinement gate biases. Not only does this demonstration prove the value of having an $in~situ$ excited-state measurement technique as part of a standard tune-up procedure, it also suggests that in typical Si/SiGe quantum dot devices, spin-blockade can be limited by lateral orbital excitation energy rather than valley splitting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا