ﻻ يوجد ملخص باللغة العربية
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a Levy stable distribution in conjunction with a model where a particles momentum is correlated with its space-time point of production, the taumodel. Using this description and the measured rapidity and transverse momentum distributions, the space-time evolution of particle emission in two-jet events is reconstructed. However, the elongation of the particle emission region previously observed is not accommodated in the taumodel, and this is investigated using an adhoc/ modification.
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a Levy stable distribution in conjunction with a hadronization model
Bose-Einstein correlations in pairs of identical particles were analyzed in e+ e- multihadron annihilations at ~91.2 GeV at LEP. The first studies involved identical charged pions and the emitting source size was determined. Then the study of charged
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays and in 7 TeV pp minimum bias interactions are investigated within the framework of the tau-model.
An overview of measurements of Bose-Einstein correlations in W-pair events at LEP is given. The results presented are based on data collected at centre-of-mass energies between 172 and 202GeV. The review concentrates on the search for Bose-Einstein c
The mean charge multiplicity in hadronic three-jet Z decays has been measured with the DELPHI detector as a function of the event topology and compared with recent theoretical calculations. The QCD colour factor ratio C_A/C_F was determined, and the