ﻻ يوجد ملخص باللغة العربية
Earlier studies of 239Pu(n, f) have been extended to incident neutron energies up to 20 MeV within the framework of the event-by-event fission model FREYA, into which we have incorporated multichance fission and pre-equilibrium neutron emission. The main parameters controlling prompt fission neutron evaporation have been identified and the prompt fission neutron spectrum has been analyzed by fitting those parameters to the average neutron multiplicity nubar from ENDF-B/VII.0, including the energy-energy correlations in nubar(E) obtained by fitting to the experimental nubar data used in the ENDF-B/VII.0 evaluation. We present our results, discuss relevant tests of this new evaluation, and describe possible further improvements.
Employing a recently developed Monte Carlo model, we study the fission of 240Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted i
The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observa
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where
Prompt fission neutron spectra from $^{239}$Pu($n,f$) were measured for incident neutron energies from $0.7$ to $700,$MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center. A newly designed high-efficiency fissio
The average prompt-fission-neutron multiplicity $bar{ u}$ is of significance in the areas of nuclear theory, nuclear nonproliferation, and nuclear energy. In this work, the surrogate-reaction method has been used for the first time to indirectly dete