ترغب بنشر مسار تعليمي؟ اضغط هنا

STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

115   0   0.0 ( 0 )
 نشر من قبل Pei Liu
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called emph{randomized distributed space-time coding} (emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, emph{STiCMAC} picks a emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.



قيم البحث

اقرأ أيضاً

In sensor networks communication by broadcast methods involves many hazards, especially collision. Several MAC layer protocols have been proposed to resolve the problem of collision namely ARBP, where the best achieved success rate is 90%. We hereby propose a MAC protocol which achieves a greater success rate (Success rate is defined as the percentage of delivered packets at the source reaching the destination successfully) by reducing the number of collisions, but by trading off the average propagation delay of transmission. Our proposed protocols are also shown to be more energy efficient in terms of energy dissipation per message delivery, compared to the currently existing protocol.
Recent advances in antenna technology have made the design of multi-beam antennas (MBA) feasible. Compared to an omni-directional or a single beam directional antenna, an MBA equipped node can achieve a throughput of up to m times, by simultaneously communicating on its m non-interfering beams. As a result, a few multi-beam directional medium access control (MAC) schemes have been proposed in the literature recently, which are implemented mostly on the in-house simulation setups in Matlab or C/C++. These implementations make many assumptions to simplify their design, without a thorough implementation of other network layers. However, the implementation of a multi-beam MAC scheme on the well-known discrete event network simulator platforms (such as the Riverbed Modeler, NS3, QualNet) is challenging as it requires extensive changes and additions to various source code modules. In fact, the network protocols in these simulator packages have been mainly designed for omni-directional communication, and very few implementations of directional MAC and other network protocols exist in the literature. This paper presents a framework to implement a multi-beam directional MAC scheme in multi-hop wireless networks, by using the Wireless Suite of Riverbed Modeler. The detailed implementation procedures are described for multi-beam antenna module, multi-beam node model, concurrent packet transmission and reception, scheduling, collision avoidance, retransmission, and local node synchronization. These MAC modules and methodology can be very helpful to the researchers and developers for implementing the single-beam as well as multi-beam directional MAC and routing protocols in Riverbed Modeler.
Reconfigurable intelligent surface (RIS) is a promising reflective radio technology for improving the coverage and rate of future wireless systems by reconfiguring the wireless propagation environment. The current work mainly focuses on the physical layer design of RIS. However, enabling multiple devices to communicate with the assistance of RIS is a crucial challenging problem. Motivated by this, we explore RIS-assisted communications at the medium access control (MAC) layer and propose an RIS-assisted MAC framework. In particular, RISassisted transmissions are implemented by pre-negotiation and a multi-dimension reservation (MDR) scheme. Based on this, we investigate RIS-assisted single-channel multi-user (SCMU) communications. Wherein the RIS regarded as a whole unity can be reserved by one user to support the multiple data transmissions, thus achieving high efficient RIS-assisted connections at the user. Moreover, under frequency-selective channels, implementing the MDR scheme on the RIS group division, RISassisted multi-channel multi-user (MCMU) communications are further explored to improve the service efficiency of the RIS and decrease the computation complexity. Besides, a Markov chain is built based on the proposed RIS-assisted MAC framework to analyze the system performance of SCMU/MCMU. Then the optimization problem is formulated to maximize the overall system capacity of SCMU/MCMU with energy-efficient constraint. The performance evaluations demonstrate the feasibility and effectiveness of each
127 - Song Yean Cho 2007
Multicast is a central challenge for emerging multi-hop wireless architectures such as wireless mesh networks, because of its substantial cost in terms of bandwidth. In this report, we study one specific case of multicast: broadcasting, sending data from one source to all nodes, in a multi-hop wireless network. The broadcast we focus on is based on network coding, a promising avenue for reducing cost; previous work of ours showed that the performance of network coding with simple heuristics is asymptotically optimal: each transmission is beneficial to nearly every receiver. This is for homogenous and large networks of the plan. But for small, sparse or for inhomogeneous networks, some additional heuristics are required. This report proposes such additional new heuristics (for selecting rates) for broadcasting with network coding. Our heuristics are intended to use only simple local topology information. We detail the logic of the heuristics, and with experimental results, we illustrate the behavior of the heuristics, and demonstrate their excellent performance.
In a distributed space-time coding scheme, based on the relay channel model, the relay nodes co-operate to linearly process the transmitted signal from the source and forward them to the destination such that the signal at the destination appears as a space time block code. Recently, a code design criteria for achieving full diversity in a partially-coherent environment have been proposed along with codes based on differential encoding and decoding techniques. For such a set up, in this paper, a non-differential encoding technique and construction of distributed space time block codes from unitary matrix groups at the source and a set of diagonal unitary matrices for the relays are proposed. It is shown that, the performance of our scheme is independent of the choice of unitary matrices at the relays. When the group is cyclic, a necessary and sufficient condition on the generator of the cyclic group to achieve full diversity and to minimize the pairwise error probability is proved. Various choices on the generator of cyclic group to reduce the ML decoding complexity at the destination is presented. It is also shown that, at the source, if non-cyclic abelian unitary matrix groups are used, then full-diversity can not be obtained. The presented scheme is also robust to failure of any subset of relay nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا