ترغب بنشر مسار تعليمي؟ اضغط هنا

High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy

146   0   0.0 ( 0 )
 نشر من قبل Nan Lin Wang
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report optical spectroscopic measurements on electron- and hole-doped BaFe2As2. We show that the compounds in the normal state are not simple metals. The optical conductivity spectra contain, in addition to the free carrier response at low frequency, a temperature-dependent gap-like suppression at rather high energy scale near 0.6 eV. This suppression evolves with the As-Fe-As bond angle induced by electron- or hole-doping. Furthermore, the feature becomes much weaker in the Fe-chalcogenide compounds. We elaborate that the feature is caused by the strong Hunds rule coupling effect between the itinerant electrons and localized electron moment arising from the multiple Fe 3d orbitals. Our experiments demonstrate the coexistence of itinerant and localized electrons in iron-based compounds, which would then lead to a more comprehensive picture about the metallic magnetism in the materials.

قيم البحث

اقرأ أيضاً

A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re=rare-earth element) and AFe$_2$As$_2$ (A=alkaline-earth meta l) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe$_2$As$_2$. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron-phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the emph{T}-dependent mid-infrared peak at 0.6-0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.
64 - G. Deutscher , 2005
In conventional BCS superconductors, the electronic kinetic energy increases upon superfluid condensation (the change DEkin is positive). Here we show that in the high critical temperature superconductor Bi-2212, DEkin crosses over from a fully compa tible conventional BCS behavior (DEkin>0) to an unconventional behavior (DEkin<0) as the free carrier density decreases. If a single mechanism is responsible for superconductivity across the whole phase diagram of high critical temperature superconductors, this mechanism should allow for a smooth transition between such two regimes around optimal doping.
We report on Raman scattering experiments of the undoped SrFe2As2 and superconducting Sr0.85K0.15Fe2As2 (Tc=28K) and Ba0.72K0.28Fe2As2 (Tc=32K) single crystals. The frequency and linewidth of the B1g mode at 210 cm-1 exhibits an appreciable temperatu re dependence induced by the superconducting and spin density wave transitions. We give estimates of the electron-phonon coupling related to this renormalization. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations to low temperatures. In the superconducting state the renormalization of an electronic continuum is observed with a threshold energy of 61cm-1.
An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high temperature superconductors. The majority of high temperature experiments performed thus fa r, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping, or whether they vanish due to their gapping. Here we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime.
We investigate the pairing symmetry in heavily overdoped Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$ based on the spin-fluctuation mechanism. The exotic octet nodes of the superconducting gap and the unusual evolution of the gap with doping observed by the rec ent experiments are well explained in a unified manner. We demonstrate that the scatterings of electrons on the Fermi patches is mainly responsible for the incommensurate spin fluctuations and consequently the Fermi-surface-dependent multi-gap structure, since the Fermi level is close to the flat band. In addition, we find that a $d$-wave pairing state will prevail over the s-wave pairing state around the Lifshitz transition point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا