ﻻ يوجد ملخص باللغة العربية
The (consistent or decoherent) histories interpretation provides a consistent realistic ontology for quantum mechanics, based on two main ideas. First, a logic (system of reasoning) is employed which is compatible with the Hilbert-space structure of quantum mechanics as understood by von Neumann: quantum properties and their negations correspond to subspaces and their orthogonal complements. It employs a special (single framework) syntactical rule to construct meaningful quantum expressions, quite different from the quantum logic of Birkhoff and von Neumann. Second, quantum time development is treated as an inherently stochastic process under all circumstances, not just when measurements take place. The time-dependent Schrodinger equation provides probabilities, not a deterministic time development of the world. The resulting interpretive framework has no measurement problem and can be used to analyze in quantum terms what is going on before, after, and during physical preparation and measurement processes. In particular, appropriate measurements can reveal quantum properties possessed by the measured system before the measurement took place. There are no mysterious superluminal influences: quantum systems satisfy an appropriate form of Einstein locality. This ontology provides a satisfactory foundation for quantum information theory, since it supplies definite answers as to what the information is about. The formalism of classical (Shannon) information theory applies without change in suitable quantum contexts, and this suggests the way in which quantum information theory extends beyond its classical counterpart.
In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches t
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an
The ontological aspect of Bohmian mechanics, as a hidden-variable theory that provides us with an objective description of a quantum world without observers, is widely known. Yet its practicality is getting more and more acceptance and relevance, for
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measure
The quantum adiabatic theorem states that if a quantum system starts in an eigenstate of the Hamiltonian, and this Hamiltonian varies sufficiently slowly, the system stays in this eigenstate. We investigate experimentally the conditions that must be