ﻻ يوجد ملخص باللغة العربية
In describing the motion of atoms and clusters, we face with choosing quantum mechanics or classical mechanics under different conditions. In principle, there exist two criteria for this choice, but they do contradict in some cases though they are in agreement for other cases. Actually, this problem is closely related with the effective centre-of-mass method, the underlying application of quantum mechanics. It is shown that quantum mechanics must be selected for particles motion when the de Broglie wave length of the mass centre is larger than the particle size, and in such case the effective centre-of-mass can be used in Quantum Mechanics. In order to test this conclusion, an easy-manufactured experiment is suggested.
We characterize both entanglement and quantum coherence in a molecular system by connecting the linear entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence and local quantum uncertainty on electr
We present a new algorithm for vibrational control in deuterium molecules that is feasible with current experimental technology. A pump mechanism is used to create a coherent superposition of the D2+ vibrations. A short, intense infrared control puls
As demonstrated in our previous work [J. Chem. Phys. 149, 174109 (2018)], the kinetic energy imparted to a quantum rotor by a non-resonant electromagnetic pulse with a Gaussian temporal profile exhibits quasi-periodic drops as a function of the pulse
We show that in complete agreement with classical mechanics, the dynamics of any quantum mechanical wave packet in a linear gravitational potential involves the gravitational and the inertial mass only as their ratio. In contrast, the spatial modulat
Engineering desired Hamiltonian in quantum many-body systems is essential for applications such as quantum simulation, computation and sensing. Conventional quantum Hamiltonian engineering sequences are designed using human intuition based on perturb