ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hubble Space Telescope Cluster Supernova Survey: V. Improving the Dark Energy Constraints Above z>1 and Building an Early-Type-Hosted Supernova Sample

154   0   0.0 ( 0 )
 نشر من قبل Kyle Dawson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae SNe Ia from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the worlds sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift $z=1$, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on the dark energy density rho_{DE}(z) at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a LambdaCDM universe, we find Omega_Lambda = 0.724 +0.015/-0.016 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = -0.985 +0.071/-0.077 (68% CL). Curvature is constrained to ~0.7% in the owCDM model and to ~2% in a model in which dark energy is allowed to vary with parameters w_0 and w_a. Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z>1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.



قيم البحث

اقرأ أيضاً

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z ~ 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z > 1 and strengthening the case for a SN Ia rate that is equal to or greater than ~0.6 x 10^-4/yr/Mpc^3 at z ~ 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.
We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.45 from the Hubble Space Telescope (HST) Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 + /- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41 +0.47/-0.40, consistent with measurements of the delay time distribution in the field. This measurement is generally consistent with expectations for the double degenerate scenario and inconsistent with some models for the single degenerate scenario predicting a steeper delay time distribution at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.
We use a sample of 45 core collapse supernovae detected with the Advanced Camera for Surveys on-board the Hubble Space Telescope to derive the core collapse supernova rate in the redshift range 0.1<z<1.3. In redshift bins centered on <z>=0.39, <z>=0. 73, and <z>=1.11, we find rates 3.00 {+1.28}{-0.94}{+1.04}{-0.57}, 7.39 {+1.86}{-1.52}{+3.20}{-1.60}, and 9.57 {+3.76}{-2.80}{+4.96}{-2.80}, respectively, given in units yr^{-1} Mpc^{-3} 10^{-4} h_{70}^3. The rates have been corrected for host galaxy extinction, including supernovae missed in highly dust enshrouded environments in infrared bright galaxies. The first errors represent statistical while the second are the estimated systematic errors. We perform a detailed discussion of possible sources of systematic errors and note that these start to dominate over statistical errors at z>0.5, emphasizing the need to better control the systematic effects. For example, a better understanding of the amount of dust extinction in the host galaxies and knowledge of the supernova luminosity function, in particular the fraction of faint M > -15 supernovae, is needed to better constrain the rates. When comparing our results with the core collapse supernova rate based on the star formation rate, we find a good agreement, consistent with the supernova rate following the star formation rate, as expected.
102 - P. Astier , J. Guy , R. Pain 2010
We present a forecast of dark energy constraints that could be obtained from a large sample of distances to Type Ia supernovae detected and measured from space. We simulate the supernova events as they would be observed by a EUCLID-like telescope wit h its two imagers, assuming those would be equipped with 4 visible and 3 near infrared swappable filters. We account for known systematic uncertainties affecting the cosmological constraints, including those arising through the training of the supernova model used to fit the supernovae light curves. Using conservative assumptions and Planck priors, we find that a 18 month survey would yield constraints on the dark energy equation of state comparable to the cosmic shear approach in EUCLID: a variable two-parameter equation of state can be constrained to ~0.03 at z~0.3. These constraints are derived from distances to about 13,000 supernovae out to z=1.5, observed in two cones of 10 and 50 deg^2. These constraints do not require measuring a nearby supernova sample from the ground. Provided swappable filters can be accommodated on EUCLID, distances to supernovae can be measured from space and contribute to obtain the most precise constraints on dark energy properties.
Using the sample of Type Ia supernovae (SNe Ia) discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey and augmented with HST-observed SNe Ia in the GOODS fields, we search for correlations between the properties of SNe and their hos t galaxies at high redshift. We use galaxy color and quantitative morphology to determine the red sequence in 25 clusters and develop a model to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, we identify six SN Ia hosts that are early-type cluster members and eleven SN Ia hosts that are early-type field galaxies. We confirm for the first time at z>0.9 that SNe Ia hosted by early-type galaxies brighten and fade more quickly than SNe Ia hosted by late-type galaxies. We also show that the two samples of hosts produce SNe Ia with similar color distributions. The relatively simple spectral energy distributions (SEDs) expected for passive galaxies enable us to measure stellar masses of early-type SN hosts. In combination with stellar mass estimates of late-type GOODS SN hosts from Thomson & Chary (2011), we investigate the correlation of host mass with Hubble residual observed at lower redshifts. Although the sample is small and the uncertainties are large, a hint of this relation is found at z>0.9. By simultaneously fitting the average cluster galaxy formation history and dust content to the red-sequence scatters, we show that the reddening of early-type cluster SN hosts is likely E(B-V) <~ 0.06. The similarity of the field and cluster early-type host samples suggests that field early-type galaxies that lie on the red sequence may also be minimally affected by dust. Hence, the early-type hosted SNe Ia studied here occupy a more favorable environment to use as well-characterized high-redshift standard candles than other SNe Ia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا