ترغب بنشر مسار تعليمي؟ اضغط هنا

Low polarized emission from the core of coronal mass ejections

154   0   0.0 ( 0 )
 نشر من قبل Bernd Inhester
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In white-light coronagraph images, cool prominence material is sometimes observed as bright patches in the core of coronal mass ejections (CMEs). If, as generally assumed, this emission is caused by Thomson-scattered light from the solar surface, it should be strongly polarised tangentially to the solar limb. However, the observations of a CME made with the SECCHI/STEREO coronagraphs on 31 August 2007 show that the emission from these bright core patches is exceptionally low polarised. We used the polarisation ratio method of Moran and Davila (2004) to localise the barycentre of the CME cloud. By analysing the data from both STEREO spacecraft we could resolve the plane-of-the-sky ambiguity this method usually suffers from. Stereoscopic triangulation was used to independently localise the low-polarisation patch relative to the cloud. We demonstrated for the first time that the bright core material is located close to the centre of the CME cloud. We show that the major part of the CME core emission, more than 85% in our case, is H$alpha$ radiation and only a small fraction is Thomson-scattered light. Recent calculations also imply that the plasma density in the patch is 8 10$^8$ cm$^{-3}$ or more compared to 2.6 10$^6$ cm$^{-3}$ for the Thomson-scattering CME environment surrounding the core material.



قيم البحث

اقرأ أيضاً

Aims. The study of the morphology of coronal mass ejections (CMEs) is an auspicious approach to understanding how magnetic fields are structured within CMEs. Although earlier studies have suggested an asymmetry in the width of CMEs in orthogonal dire ctions, this has not been inspected using multi-viewpoint observations. Methods. We inspect the early evolution (below ten solar radii) of the morphology of a dozen CMEs occurring under specific conditions of observing spacecraft location and CME trajectory, favorable to reduce uncertainties typically involved in the 3D reconstruction used here. These events are carefully reconstructed by means of a forward modeling tool using simultaneous observations of STEREO EUVI and SDO/AIA as input when originating low in the corona, and followed up in the outer fields of view of the STEREO and the SOHO coronagraphs. We then examine the height evolution of the morphological parameters arising from the reconstructions. Results. The multi-viewpoint analysis of this set of CMEs revealed that their initial expansion --below three solar radii-- is considerably asymmetric and non-self-similar. Both angular widths, namely along the main axes of CMEs ($AW_L$) and in the orthogonal direction ($AW_D$, representative of the flux rope diameter), exhibit much steeper change rates below this height, with the growth rate of $AW_L$ found to be larger than that of $AW_D$, also below that height. Angular widths along the main axes of CMEs are on average $approx$1.8 times larger than widths in the orthogonal direction $AW_D$. The ratios of the two expansion speeds, namely in the directions of CMEs main axes and in their orthogonal, are nearly constant in time after $sim$4 solar radii, with an average ratio $approx$1.6. Heights at which the width change rate is defined to stabilize are greater for $AW_L$ than for $AW_D$.
Stealth coronal mass ejections (CMEs) are eruptions from the Sun that have no obvious low coronal signature. These CMEs are characteristically slower events, but can still be geoeffective and affect space weather at Earth. Therefore, understanding th e science underpinning these eruptions will greatly improve our ability to detect and, eventually, forecast them. We present a study of two stealth CMEs analysed using advanced image processing techniques that reveal their faint signatures in observations from the extreme ultraviolet (EUV) imagers onboard the Solar and Heliospheric Observatory (SOHO), Solar Dynamics Observatory (SDO), and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The different viewpoints given by these spacecraft provide the opportunity to study each eruption from above and the side contemporaneously. For each event, EUV and magnetogram observations were combined to reveal the coronal structure that erupted. For one event, the observations indicate the presence of a magnetic flux rope before the CMEs fast rise phase. We found that both events originated in active regions and are likely to be sympathetic CMEs triggered by a nearby eruption. We discuss the physical processes that occurred in the time leading up to the onset of each stealth CME and conclude that these eruptions are part of the low-energy and velocity tail of a distribution of CME events, and are not a distinct phenomenon.
The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coron al line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.
Coronal mass ejections (CMEs) originate from closed magnetic field regions on the Sun, which are active regions and quiescent filament regions. The energetic populations such as halo CMEs, CMEs associated with magnetic clouds, geoeffective CMEs, CMEs associated with solar energetic particles and interplanetary type II radio bursts, and shock-driving CMEs have been found to originate from sunspot regions. The CME and flare occurrence rates are found to be correlated with the sunspot number, but the correlations are significantly weaker during the maximum phase compared to the rise and declining phases. We suggest that the weaker correlation results from high-latitude CMEs from the polar crown filament regions that are not related to sunspots.
89 - Heidi Korhonen 2016
Coronal mass ejections (CMEs) are explosive events that occur basically daily on the Sun. It is thought that these events play a crucial role in the angular momentum and mass loss of late-type stars, and also shape the environment in which planets fo rm and live. Stellar CMEs can be detected in optical spectra in the Balmer lines, especially in Halpha, as blue-shifted extra emission/absorption. To increase the detection probability one can monitor young open clusters, in which the stars are due to their youth still rapid rotators, and thus magnetically active and likely to exhibit a large number of CMEs. Using ESO facilities and the Nordic Optical Telescope we have obtained time series of multi-object spectroscopic observations of late-type stars in six open clusters with ages ranging from 15 Myrs to 300 Myrs. Additionally, we have studied archival data of numerous active stars. These observations will allow us to obtain information on the occurrence rate of CMEs in late-type stars with different ages and spectral types. Here we report on the preliminary outcome of our studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا