ﻻ يوجد ملخص باللغة العربية
We present reflected light spectral observations from 0.4 to 2.5 micron of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths. The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that 7 of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Finally, we consider and analyse the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a sp
Asteroid spectroscopy reflects surface mineralogy. There are few thousand asteroids whose surfaces have been observed spectrally. Determining the surface properties of those objects is important for many practical and scientific applications, such as
The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by pr
We have observed the lightcurves of 13 V-type asteroids ((1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 $mathrm{FZ_{1}}$, (8645) 1998 TN, (
To examine the distribution of rotational rates for chips of asteroid 4 Vesta, lightcurve observation of seven V-type asteroids (2511 Patterson, 2640 Hallstorm, 2653 Principia, 2795 Lapage, 3307 Athabasca, 4147 Lennon, and 4977 Rauthgundis) were perf