ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous Pattern Formation in a Polariton Condensate

83   0   0.0 ( 0 )
 نشر من قبل Francesco Manni
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polariton condensation can be regarded as a self-organization phenomenon, where phase ordering is established among particles in the system. In such condensed systems, further ordering can possibly occur in the particle density distribution, under particular experimental conditions. In this work we report on spontaneous pattern formation in a polariton condensate under non-resonant optical pumping. The slightly elliptical ring-shaped excitation laser we employ is such to force condensation to occur in a single-energy state with periodic boundary conditions, giving rise to a multi-lobe standing wave patterned state.

قيم البحث

اقرأ أيضاً

Polariton condensates have proved to be model systems to investigate topological defects, as they allow for direct and non-destructive imaging of the condensate complex order parameter. The fundamental topological excitations of such systems are quan tized vortices. In specific configurations, further ordering can bring the formation of vortex lattices. In this work we demonstrate the spontaneous formation of ordered vortical states, consisting in geometrically self-arranged vortex-antivortex pairs. A mean-field generalized Gross-Pitaevskii model reproduces and supports the physics of the observed phenomenology.
We consider a condensate of exciton-polaritons in a diluted magnetic semiconductor microcavity. Such system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconduc tor. We investigate the effect of the nonequilibrium nature of exciton-polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and derive a critical condition for self-trapping which is different to the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.
151 - K. Kwon , K. Mukherjee , S. Huh 2021
We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole ($l=2$) to heptagon modes ($l=7$), are param etrically excited by modulating the scattering length near the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that only the $l=6$ mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our experimental results are in excellent agreement with the mean-field framework. Our work opens a new pathway for generating higher-lying collective excitations with applications, such as the probing of exotic properties of quantum fluids and providing a generation mechanism of quantum turbulence.
Polaritons in microcavities are versatile quasi-2D bosonic particles with a high degree of coherence and strong nonlinearities, thanks to their hybrid light-matter character. In their condensed form, they display striking quantum hydrodynamic feature s analogous to atomic Bose-Einstein condensates, such as long-range order coherence, superfluidity and quantized vorticity. Their variegated dispersive and dissipative properties, however, set significant differences from their atomic counterpart. In this work, we report the unique phenomenology that is observed when a pulse of light impacts the polariton vacuum: the condensate that is instantaneously formed does not splash in real space but instead coheres into an enigmatic structure, featuring concentric rings and, most notably, a sharp and bright peak at the center. Using a state-of-the-art ultrafast imaging with 50 fs time steps, we are able to track the dynamics of the polariton mean-field wavefunction in both real and reciprocal space. The observation of the real-space collapse of the condensate into an extremely localized---resolution limited---peak is at odd with the repulsive interactions of polaritons and their positive effective mass. An unconventional mechanism is therefore at play to account for our observations. Our modeling suggests that self-trapping due to a local heating of the crystal lattice---that can be described as a collective polaron formed by a polariton condensate---could be involved. These observations hint at the fascinating fluid dynamics of polaritons in conditions of extreme intensities and ultrafast times.
105 - L. Dominici , D. Colas , S. Donati 2014
We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or swi tching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا