ﻻ يوجد ملخص باللغة العربية
We derive the extinction curve towards the Galactic Center from 1 to 19 micron. We use hydrogen emission lines of the minispiral observed by ISO-SWS and SINFONI. The extinction free flux reference is the 2 cm continuum emission observed by the VLA. Towards the inner 14 * 20 we find an extinction of A(2.166 micron)=2.62 +/- 0.11, with a power-law slope of alpha=-2.11 +/- 0.06 shortward of 2.8 micron, consistent with the average near infrared slope from the recent literature. At longer wavelengths, however, we find that the extinction is grayer than shortward of 2.8 micron. We find it is not possible to fit the observed extinction curve with a dust model consisting of pure carbonaceous and silicate grains only, and the addition of composite particles, including ices, is needed to explain the observations. Combining a distance dependent extinction with our distance independent extinction we derive the distance to the GC to be R_0=7.94 +/- 0.65 kpc. Towards Sgr A* (r<0.5) we obtain A_H=4.21 +/- 0.10, A_Ks=2.42 +/- 0.10 and A_L=1.09 +/- 0.13.
Due to the extreme extinction towards the Galactic centre ($A_{V} sim 30$ mag), its stellar population is mainly studied in the near-infrared (NIR) regime. Therefore, a proper analysis of the NIR extinction curve is necessary to fully characterise th
[ABRIDGED] Context. O stars are excellent tracers of the intervening ISM because of their high luminosity, blue intrinsic SED, and relatively featureless spectra. We are currently conducting GOSSS, which is generating a large sample of O stars with a
Based on the data obtained from the Spitzer/GLIPMSE Legacy Program and the 2MASS project, we derive the extinction in the four IRAC bands, [3.6], [4.5], [5.8] and [8.0] micron, relative to the 2MASS Ks band (at 2.16 micron) for 131 GLIPMSE fields alo
We present an extinction map of the inner $sim$SI{15}{arcminute} by {16}{arcminute} of the Galactic Center (GC) with map `pixels measuring SI{5}{arcsecond} $times$ SI{5}{arcsecond} using integrated light color measurements in the near- and mid-infrar
We systematically investigate the error sources for high-precision astrometry from adaptive optics based near-infrared imaging data. We focus on the application in the crowded stellar field in the Galactic Center. We show that at the level of <=100 m