ﻻ يوجد ملخص باللغة العربية
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in this quantum advantage. We show that, in this scenario, the quantum discord quantifies the advantage of the quantum protocol over the corresponding classical one for any classical-quantum state.
Quantum discord quantifies non-classical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whol
We show that genuine multiparty quantum correlations can exist on its own, without a supporting background of genuine multiparty classical correlations, even in macroscopic systems. Such possibilities can have important implications in the physics of quantum information and phase transitions.
Quantum discord is a measure of non-classical correlations, which are excess correlations inherent in quantum states that cannot be accessed by classical measurements. For multipartite states, the classically accessible correlations can be defined by
The quantum superposition principle has been extensively utilized in the quantum mechanical description of the bonding phenomenon. It explains the emergence of delocalized molecular orbitals and provides a recipe for the construction of near-exact el
A unifying principle explaining the numerical bounds of quantum correlations remains elusive despite the efforts devoted to identifying it. Here we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenar