ﻻ يوجد ملخص باللغة العربية
Stationary axisymmetric systems of two extreme Kerr sources separated by a massless strut, which arise as subfamilies of the well-known Kinnersley-Chitre solution, are studied. We present explicit analytical formulas for the individual masses and angular momenta of the constituents and establish the range of the parameters for which such systems can be regarded as describing black holes. The mass-angular momentum relations and the interaction force in the black-hole configurations are also analyzed. Furthermore, we construct a charging generalization of the Kinnersley-Chitre metric and, as applications of the general formulas obtained, discuss two special cases describing a pair of identical co- and counterrotating extreme Kerr-Newman black holes kept apart by a conical singularity. From our analysis it follows in particular that the equality $m^2-a^2-e^2=0$ relating the mass, angular momentum per unit mass and electric charge of a single Kerr-Newman extreme black hole is no longer verified by the analogous extreme black-hole constituents in binary configurations.
The low-energy dynamics of any system admitting a continuum of static configurations is approximated by slow motion in moduli (configuration) space. Here, following Ferrell and Eardley, this moduli space approximation is utilized to study collisions
In the present paper the repulsion of two extreme Kerr black holes arising from their spin-spin interaction is analyzed within the framework of special subfamilies of the well-known Kinnersley-Chitre solution. The binary configurations of both equal
In this paper, we employ the general equatorially symmetric two-soliton solution of the Einstein-Maxwell equations for elaborating two physically meaningful configurations describing a pair of equal Kerr-Newman corotating black holes separated by a m
In the corpuscular picture of black hole there exists no geometric notion of horizon which, instead, only emerges in the semi-classical limit. Therefore, it is very natural to ask - what happens if we send a signal towards a corpuscular black hole? W
We study the interior of distorted stationary rotating black holes on the example of a Kerr black hole distorted by external static and axisymmetric mass distribution. We show that there is a duality transformation between the outer and inner horizon