ﻻ يوجد ملخص باللغة العربية
Telescopes often modify the input polarization of a source so that the measured circular or linear output state of the optical signal can be signficantly different from the input. This mixing, or polarization cross-talk, is defined by the optical system Mueller matrix. We describe here an efficient method for recovering the input polarization state of the light and the full 4 x 4 Mueller matrix of the telescope with an accuracy of a few percent without external masks or telescope hardware modification. Observations of the bright, highly polarized daytime sky using the Haleakala 3.7m AEOS telescope and a coude spectropolarimeter demonstrate the technique.
The daytime sky has been recently demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K Inouye Solar Telescope (DKIST) and other large telescopes under construction ca
Well-calibrated spectropolarimetry studies at resolutions of $R>$10,000 with signal-to-noise ratios (SNRs) better than 0.01% across individual line profiles, are becoming common with larger aperture telescopes. Spectropolarimetric studies require hig
The New Vacuum Solar Telescope (NVST) is a 1 meter vacuum solar telescope that aims to observe the fine structures on the Sun. The main tasks of NVST are high resolution imaging and spectral observations, including the measurements of solar magnetic
The first observations with the 25 cm telescope of the Shumen Astronomical Observatory led to the following conclusions: (a) Intra-night observations of variable stars with an amplitude larger than 0.1 mag are possible down to 14 mag with an acceptab
Except for very particular and artificial experimental configurations, linear transformations of the state of polarization of an electromagnetic wave result in a reduction of the intensity of the exiting wave with respect to the incoming one. This na