ترغب بنشر مسار تعليمي؟ اضغط هنا

The decompression of the outer neutron star crust and r-process nucleosynthesis

89   0   0.0 ( 0 )
 نشر من قبل S. Goriely
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The rapid neutron-capture process, or r-process, is known to be fundamental for explaining the origin of approximately half of the A>60 stable nuclei observed in nature. In recent years nuclear astrophysicists have developed more and more sophisticated r-process models, by adding new astrophysical or nuclear physics ingredients to explain the solar system composition in a satisfactory way. Despite these efforts, the astrophysical site of the r-process remains unidentified. The composition of the neutron star outer crust material is investigated after the decompression that follows its possible ejection. The composition of the outer crust of a neutron star is estimated before and after decompression. Two different possible initial conditions are considered, namely an idealized crust composed of cold catalyzed matter and a crust initially in nuclear statistical equilibrium at temperatures around 10 GK. We show that in this second case before decompression and at temperatures typically corresponding to 8 GK, the Coulomb effect due to the high densities in the crust leads to an overall composition of the outer crust in neutron-rich nuclei with a mass distribution close to the solar system r-abundance distribution. Such distributions differ, however, from the solar one due to a systematic shift in the second peak to lower values. After decompression, the capture of the few neutrons per seed nucleus available in the hot outer crust leads to a final distribution of stable neutron-rich nuclei with a mass distribution of 80 < A < 140 nuclei in excellent agreement with the solar distribution, provided the outer crust is initially at temperatures around 8 GK and all layers of the outer crust are ejected. The decompression of the neutron star matter from the outer crust provides suitable conditions for a robust r-processing of the light species, i.e., r-nuclei with A < 140.

قيم البحث

اقرأ أيضاً

94 - Stephane Goriely , 2011
Although the rapid neutron-capture process, or r-process, is fundamentally important for explaining the origin of approximately half of the stable nuclei with A > 60, the astrophysical site of this process has not been identified yet. Here we study r -process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars (NSs) and within milliseconds afterwards. For the first time we make use of relativistic hydrodynamical simulations of such events, defining consistently the conditions that determine the nucleosynthesis, i.e., neutron enrichment, entropy, early density evolution and thus expansion timescale, and ejecta mass. We find that 10^{-3}-10^{-2} solar masses are ejected, which is enough for mergers to be the main source of heavy (A > 140) galactic r-nuclei for merger rates of some 10^{-5} per year. While asymmetric mergers eject 2-3 times more mass than symmetric ones, the exact amount depends weakly on whether the NSs have radii of ~15 km for a stiff nuclear equation of state (EOS) or ~12 km for a soft EOS. R-process nucleosynthesis during the decompression becomes largely insensitive to the detailed conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Estimating the light curve powered by the radioactive decay heating of r-process nuclei with an approximative model, we expect high emission in the B-V-R bands for 1-2 days with potentially observable longer duration in the case of asymmetric mergers because of the larger ejecta mass.
We study here the formation of heavy r-process nuclei in the high-entropy environment of rapidly expanding neutrino-driven winds from compact objects. In particular, we explore the sensitivity of the element creation in the A>130 region to the low-te mperature behavior of the outflows. For this purpose we employ a simplified model of the dynamics and thermodynamical evolution for radiation dominated, adiabatic outflows. It consists of a first stage of fast, exponential cooling, followed by a second phase of slower evolution, either assuming constant density and temperature or a power-law decay of these quantities. These cases are supposed to capture the most relevant effects of a strong deceleration or decreasing acceleration of the transsonic outflows, respectively, e.g. in a wind termination shock caused by the collision with the slower, preceding supernova ejecta. We find that not only the transition temperature between the two expansion phases can make a big difference in the formation of the platinum peak, but also the detailed cooling law during the later phase. Unless the transition temperature and corresponding (free neutron) density become too small (T < 2*10^8 K), a lower temperature or faster temperature decline during this phase allow for a stronger appearance of the third abundance peak. Since the nuclear photodisintegration rates between ~2*10^8 K and ~10^9 K are more sensitive to the temperature than the n-capture rates are to the free neutron density, a faster cooling in this temperature regime shifts the r-process path closer to the n-drip line. With low (gamma,n)- but high beta-decay rates, the r-processing then does not proceed through a (gamma,n)-(n,gamma) equilibrium but through a quasi-equilibrium of (n,gamma)-reactions and beta-decays, as recently also pointed out by Wanajo.
The cosmic evolution of the neutron star merger (NSM) rate can be deduced from the observed cosmic star formation rate. This allows to estimate the rate expected in the horizon of the gravitational wave detectors advanced Virgo and ad LIGO and to com pare those rates with independent predictions. In this context, the rapid neutron capture process, or r process, can be used as a constraint assuming NSM is the main astrophysical site for this nucleosynthetic process. We compute the early cosmic evolution of a typical r process element, Europium. Eu yields from NSM are taken from recent nucleosynthesis calculations. The same approach allows to compute the cosmic rate of Core Collapse SuperNovae (CCSN) and the associated evolution of Eu. We find that the bulk of Eu observations at high iron abundance can be rather well fitted by either CCSN or NSM scenarios. However, at lower metallicity, the early Eu cosmic evolution favors NSM as the main astrophysical site for the r process. A comparison between our calculations and spectroscopic observations at very low metallicities allows to constrain the coalescence timescale in the NSM scenario to about 0.1 to 0.2 Gyr. These values are in agreement with the coalescence timescales of some observed binary pulsars. Finally, the cosmic evolution of Eu is used to put constraints on the NSM rate, the merger rate in the horizon of the gravitational wave detectors advanced Virgo/ad LIGO, as well as the expected rate of electromagnetic counterparts to mergers (kilonovae) in large near-infrared surveys.
On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.
Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا