ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

123   0   0.0 ( 0 )
 نشر من قبل Michael Martin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 $mu$ Hz level.



قيم البحث

اقرأ أيضاً

We consider the phase stability of a local oscillator (or laser) locked to a cavity QED system comprised of atoms with an ultra-narrow optical transition. The atoms are cooled to millikelvin temperatures and then released into the optical cavity. Alt hough the atomic motion introduces Doppler broadening, the standing wave nature of the cavity causes saturated absorption features to appear, which are much narrower than the Doppler width. These features can be used to achieve an extremely high degree of phase stabilization, competitive with the current state-of-the-art. Furthermore, the inhomogeneity introduced by finite atomic velocities can cause optical bistability to disappear, resulting in no regions of dynamic instability and thus enabling a new regime accessible to experiments where optimum stabilization may be achieved.
We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $lvert 5s^{2} , ^1 textrm{S}_0 rangle ,-, lvert 5s5p , ^3 textrm{P}_1 rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynamics of the phase dispersion slope is experimentally investigated and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.
Magnetically induced optical transparency (MIOT) is a technique to realize the narrow transmission spectrum in a cavity quantum electric dynamics (cavity QED) system, which is demonstrated in the recent experiment of cold 88Sr atoms in an optical cav ity [Phys. Rev. Lett. 118, 263601 (2017)]. In this experiment, MIOT induces a new narrow transmission window for the probe beam, which is highly immune to the fluctuation of the cavity mode frequency. The linewidth of this transmission window approaches the decay rate of the electronic 3P1 state (about 2pi*7.5kHz) and is much less than the uncertainty of the cavity mode frequency (about 2pi*150kHz). In this work, we propose an approach to further reduce the linewidth of this MIOT-induced transmission window, with the help of two Raman beams which couples the electronic 3P1 state to the3S1state, and the3S1state to the 3P0 state, respectively. With this approach, one can reduce the transmission linewidth by orders of magnitude. Moreover, the peak value of the relative transmission power or the transmission rate of the probe beam is almost unchanged by the Raman beams. Our results are helpful for the study of precision measurement and other quantum optical processes based on cavity quantum electronic dynamics (cavity-QED).
114 - A. D. Boozer 2008
We present two schemes for driving Raman transitions between the ground state hyperfine manifolds of a single atom trapped within a high-finesse optical cavity. In both schemes, the Raman coupling is generated by standing-wave fields inside the cavit y, thus circumventing the optical access limitations that free-space Raman schemes must face in a cavity system. These cavity-based Raman schemes can be used to coherently manipulate both the internal and the motional degrees of freedom of the atom, and thus provide powerful tools for studying cavity quantum electrodynamics. We give a detailed theoretical analysis of each scheme, both for a three-level atom and for a multi-level cesium atom. In addition, we show how these Raman schemes can be used to cool the axial motion of the atom to the quantum ground state, and we perform computer simulations of the cooling process.
A semiclassical model is presented for characterizing the linear response of elementary quantum optical systems involving cavities, optical fibers, and atoms. Formulating the transmission and reflection spectra using a scattering-wave (transfer matri x) approach, the calculations become easily scalable. To demonstrate how useful this method is, we consider the example of a simple quantum network, i.e., two cavity-QED systems connected via an optical fiber. Differences between our quasi-exact transfer matrix approach and a single-mode, linearized quantum-optical model are demonstrated for parameters relevant to recent experiments with coupled nanofiber-cavity-QED systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا