ﻻ يوجد ملخص باللغة العربية
We consider a finite-dimensional, locally finite CAT(0) cube complex X admitting a co-compact properly discontinuous countable group of automorphisms G. We construct a natural compact metric space B(X) on which G acts by homeomorphisms, the action being minimal and strongly proximal. Furthermore, for any generating probability measure on G, B(X) admits a unique stationary measure, and when the measure has finite logarithmic moment, it constitutes a compact metric model of the Poisson boundary. We identify a dense G-delta subset of B(X) on which the action of G is Borel-amenable, and describe the relation of these two spaces to the Roller boundary. Our construction can be used to give a simple geometric proof of Property A for the complex. Our methods are based on direct geometric arguments regarding the asymptotic behavior of half-spaces and their limiting ultrafilters, which are of considerable independent interest. In particular we analyze the notions of median and interval in the complex, and use the latter in the proof that B(X) is the Poisson boundary via the strip criterion developed by V. Kaimanovich.
We discuss a problem posed by Gersten: Is every automatic group which does not contain Z+Z subgroup, hyperbolic? To study this question, we define the notion of n-tracks of length n, which is a structure like Z+Z, and prove its existence in the non-h
For each d we construct CAT(0) cube complexes on which Cremona groups rank d act by isometries. From these actions we deduce new and old group theoretical and dynamical results about Cremona groups. In particular, we study the dynamical behaviour of
To every Gromov hyperbolic space X one can associate a space at infinity called the Gromov boundary of X. Gromov showed that quasi-isometries of hyperbolic metric spaces induce homeomorphisms on their boundaries, thus giving rise to a well-defined no
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali
We provide a necessary and sufficient condition on a finite flag simplicial complex, L, for which there exists a unique CAT(0) cube complex whose vertex links are all isomorphic to L. We then find new examples of such CAT(0) cube complexes and prove