ﻻ يوجد ملخص باللغة العربية
We study the implication of the collapsar model for Long Gamma-Ray Bursts (LGRBs) on the metallicity properties of the host galaxies, by combining high-resolution N-body simulations with semi-analytic models of galaxy formation. The cosmological model that we use reproduces the Fundamental Metallicity Relation recently discovered for the SDSS galaxies, whereby the metallicity decreases with increasing Star Formation Rate for galaxies of a given stellar mass. We select host galaxies housing pockets of gas-particles, young and with different thresholds in metallicities, that can be sites of LRGB events, according to the collapsar model. The simulated samples are compared with 18 observed LGRB hosts in the aim at discriminating whether the metallicity is a primary parameter. We find that a threshold in metallicity for the LGRB progenitors, within the model galaxies, is not necessary in order to reproduce the observed distribution of host metallicities. The low metallicities of observed LGRB hosts is a consequence of the high star formation environment. The star formation rate appears to be the primary parameter to generate a burst event. Finally, we show that only a few LGRBs are observed in massive, highly extincted galaxies, while these galaxies are expected to produce many such events. We identify these missing events with the fraction of dark LGRBs.
We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (textit{FastSound}) consisting of $sim$ 4,000 galaxies at $zsim1.4$ with significant H$alpha$ detection. We measure the gas-phase metallicity from the [N~{sc ii}]
We use $sim$83,000 star-forming galaxies at $0.04<z<0.3$ from the Sloan Digital Sky Survey to study the so-called fundamental metallicity relation (FMR) and report on the disappearance of its anti-correlation between metallicity and star formation ra
The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fix
Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell
Recent results have suggested that the well known mass-metallicity relation has a strong dependence on the star formation rate, to the extent that a three dimensional `fundamental metallicity relation exists which links the three parameters with mini