ترغب بنشر مسار تعليمي؟ اضغط هنا

Error Probability Bounds for Balanced Binary Relay Trees

68   0   0.0 ( 0 )
 نشر من قبل Ali Pezeshki
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the detection error probability associated with a balanced binary relay tree, where the leaves of the tree correspond to $N$ identical and independent detectors. The root of the tree represents a fusion center that makes the overall detection decision. Each of the other nodes in the tree are relay nodes that combine two binary messages to form a single output binary message. In this way, the information from the detectors is aggregated into the fusion center via the intermediate relay nodes. In this context, we describe the evolution of Type I and Type II error probabilities of the binary data as it propagates from the leaves towards the root. Tight upper and lower bounds for the total error probability at the fusion center as functions of $N$ are derived. These characterize how fast the total error probability converges to 0 with respect to $N$, even if the individual sensors have error probabilities that converge to 1/2.

قيم البحث

اقرأ أيضاً

We study the detection error probability associated with balanced binary relay trees, in which sensor nodes fail with some probability. We consider N identical and independent crummy sensors, represented by leaf nodes of the tree. The root of the tre e represents the fusion center, which makes the final decision between two hypotheses. Every other node is a relay node, which fuses at most two binary messages into one binary message and forwards the new message to its parent node. We derive tight upper and lower bounds for the total error probability at the fusion center as functions of N and characterize how fast the total error probability converges to 0 with respect to N. We show that the convergence of the total error probability is sub-linear, with the same decay exponent as that in a balanced binary relay tree without sensor failures. We also show that the total error probability converges to 0, even if the individual sensors have total error probabilities that converge to 1/2 and the failure probabilities that converge to 1, provided that the convergence rates are sufficiently slow.
In this paper we consider regular low-density parity-check codes over a binary-symmetric channel in the decoding regime. We prove that up to a certain noise threshold the bit-error probability of the bit-sampling decoder converges in mean to zero ove r the code ensemble and the channel realizations. To arrive at this result we show that the bit-error probability of the sampling decoder is equal to the derivative of a Bethe free entropy. The method that we developed is new and is based on convexity of the free entropy and loop calculus. Convexity is needed to exchange limit and derivative and the loop series enables us to express the difference between the bit-error probability and the Bethe free entropy. We control the loop series using combinatorial techniques and a first moment method. We stress that our method is versatile and we believe that it can be generalized for LDPC codes with general degree distributions and for asymmetric channels.
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.
The downlink of symmetric Cloud Radio Access Networks (C-RANs) with multiple relays and a single receiver is studied. Lower and upper bounds are derived on the capacity. The lower bound is achieved by Martons coding which facilitates dependence among the multiple-access channel inputs. The upper bound uses Ozarows technique to augment the system with an auxiliary random variable. The bounds are studied over scalar Gaussian C-RANs and are shown to meet and characterize the capacity for interesting regimes of operation.
The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable $Yinmathbb{R}$ given another random variable $Xinmathbb{R}^{d}$ is of much interest in a variety of statistical contexts. In this paper we propose two estimato rs for the MMSE, one based on a two-layer neural network and the other on a special three-layer neural network. We derive lower bounds for the MMSE based on the proposed estimators and the Barron constant of an appropriate function of the conditional expectation of $Y$ given $X$. Furthermore, we derive a general upper bound for the Barron constant that, when $Xinmathbb{R}$ is post-processed by the additive Gaussian mechanism, produces order optimal estimates in the large noise regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا