ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon Anomalous Magnetic Moment and mu -> e gamma in B-L Model with Inverse Seesaw

109   0   0.0 ( 0 )
 نشر من قبل Waleed Abdallah
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the anomalous magnetic moment of the muon, a_mu, and lepton flavor violating decay mu -> e gamma in TeV scale B-L extension of the Standard Model (SM) with inverse seesaw mechanism. We show that the B-L contributions to a_mu are severely constrained, therefore the SM contribution remains intact. We also emphasize that the current experimental limit of BR(mu -> e gamma) can be satisfied for a wide range of parameter space and it can be within the reach of MEG experiment.



قيم البحث

اقرأ أيضاً

130 - A. Abada , C. Biggio , F. Bonnet 2008
In the framework of the seesaw models with triplets of fermions, we evaluate the decay rates of $mu to e gamma$ and $tau to l gamma$ transitions. We show that although, due to neutrino mass constraints, those rates are in general expected to be well under the present experimental limits, this is not necessarily always the case. Interestingly enough, the observation of one of those decays in planned experiments would nevertheless contradict bounds stemming from present experimental limits on the $mu to eee$ and $tau to 3 l$ decay rates. Such detection of radiative decays would therefore imply that there exist sources of lepton flavour violation not associated to triplet fermions.
86 - Julia Gehrlein 2018
The Inverse Seesaw scenario relates the smallness of the neutrino masses to a small $B-L$ breaking parameter. We investigate a possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1) _{B-L}$. To obtain an anomaly free theory we need to introduce additional fermions which exhibit an interesting phenomenology. Additionally, we predict a $Z$ boson associated to the broken $B-L$ which preferentially interacts with the dark sector formed by the extra fermions making it particularly elusive.
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadro nic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $mathcal{O}(alpha^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_mu/M_W)^2$ and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at $mathcal{O}(alpha^2)$ and is due to hadronic vacuum polarization, whereas at $mathcal{O}(alpha^3)$ the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads $a_mu^text{SM}=116,591,810(43)times 10^{-11}$ and is smaller than the Brookhaven measurement by 3.7$sigma$. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future-which are also discussed here-make this quantity one of the most promising places to look for evidence of new physics.
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_mu - L_tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_mu - L_tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_mu - L_tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({rm g-2})$ through additional contribution arising from the extra $Z_{mutau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_mu-L_tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{mutau}$ portal is ineffective for the parameters needed to explain the anomalous muon $({rm g-2})$ data, the correct dark matter relic abundance can easily be obtained from annihilation through the Higgs portal. Annihilation of the scalar dark matter in our model can also explain the Galactic Centre gamma ray excess observed by Fermi-LAT. We show the predictions of our model for future direct detection experiments and neutrino oscillation experiments.
We study a radiative inverse seesaw model with local B-L symmetry, in which we extend the neutrino mass structure that is generated through a kind of inverse seesaw framework to the more generic one than our previous work. We focus on a real part of bosonic particle as a dark matter and investigate the features in O(1-80) GeV mass range, reported by the experiments such as CoGeNT and XENON (2012).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا