ﻻ يوجد ملخص باللغة العربية
Accelerating expansion of the Universe is a great challenge for both physics and cosmology. In light of lacking the convincing theoretical explanation, an effective description of this phenomenon in terms of cosmic equation of state turns out useful. The strength of modern cosmology lies in consistency across independent, often unrelated pieces of evidence. Therefore, every alternative method of restricting cosmic equation of state is important. Strongly gravitationally lensed quasar-galaxy systems create such new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination form position of images). In this paper we apply such method to a combined data sets from SLACS and LSD surveys of gravitational lenses. In result we obtain the cosmic equation of state parameters, which generally agree with results already known in the literature. This demonstrates that the method can be further used on larger samples obtained in the future. Independently noticed systematic deviation between fits done on standard candles and standard rulers is revealed in our findings. We also identify an important selection effect crucial to our method associated with geometric configuration of the lensing system along line of sight, which may have consequences for sample construction from the future lensing surveys.
Recently, some divergent conclusions about cosmic acceleration were obtained using type Ia supernovae (SNe Ia), with opposite assumptions on the intrinsic luminosity evolution. In this paper, we use strong gravitational lensing systems to probe the c
Using a new sub-sample of observed strong gravitational lens systems, for the first time, we present the equation for the angular diameter distance in the $y$-redshift scenario for cosmography and use it to test the cosmographic parameters. In additi
Strong gravitational lensing along with the distance sum rule method can constrain both cosmological parameters as well as density profiles of galaxies without assuming any fiducial cosmological model. To constrain galaxy parameters and cosmic curvat
Testing the distance-sum-rule in strong lensing systems provides an interesting method to determine the curvature parameter $Omega_k$ using more local objects. In this paper, we apply this method to a quite recent data set of strong lensing systems i
We have searched 4.5 square degrees of archival HST/ACS images for cosmic strings, identifying close pairs of similar, faint galaxies and selecting groups whose alignment is consistent with gravitational lensing by a long, straight string. We find no