ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabrication and Optical Properties of a Fully Hybrid Epitaxial ZnO-Based Microcavity in the Strong Coupling Regime

92   0   0.0 ( 0 )
 نشر من قبل Francois Reveret
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to achieve polariton lasing at room temperature, a new fabrication methodology for planar microcavities is proposed: a ZnO-based microcavity in which the active region is epitaxially grown on an AlGaN/AlN/Si substrate and in which two dielectric mirrors are used. This approach allows as to simultaneously obtain a high-quality active layer together with a high photonic confinement as demonstrated through macro-, and micro-photoluminescence ({mu}-PL) and reflectivity experiments. A quality factor of 675 and a maximum PL emission at k=0 are evidenced thanks to {mu}-PL, revealing an efficient polaritonic relaxation even at low excitation power.

قيم البحث

اقرأ أيضاً

331 - L. Orosz , F. Reveret , F. Medard 2011
Polariton relaxation mechanisms are analysed experimentally and theoretically in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the energy difference between the exciton reservoir and the bottom of the lower polariton branch is resonant with the LO phonon energy. Tuning off this resonance increases the threshold, and exciton-exciton scattering processes become involved in the polariton relaxation. These observations are qualitatively reproduced by simulations based on the numerical solution of the semi-classical Boltzmann equations.
The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits co upled to resonators. Recently there has been renewed interest in studying the quantum strong-coupling (QSC) regime, where states with photon number greater than one are excited. This regime has been recently achieved in semiconductor nanostructures, where a quantum dot is trapped in a planar microcavity. Here we study the quantum strong-coupling regime by calculating its photoluminescence (PL) properties under a pulsed excitation. We discuss the changes in the PL as the QSC regime is reached, which transitions between a peak around the cavity resonance to a doublet. We particularly examine the variations of the PL in the time domain, under regimes of short and long pulse times relative to the microcavity decay time.
When the coupling between light and matter becomes comparable to the energy gap between different excited states they hybridize, leading to the appearance of a rich and complex phenomenology which attracted remarkable interest in recent years. While the mixing between states with different number of excitations, so-called ultrastrong coupling regime, has been observed in various implementations, the effect of the hybridization between different single excitation states, referred to as very strong coupling regime, has remained elusive. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wavefunctions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity with 28 GaAs quantum wells, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This manifests in a diamagnetic shift around zero detuning that exceeds the shift of the lower polariton by one order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of two. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode which suggests more tightly bound electron-hole pairs than in the bare quantum well.
We present results of magneto-optical measurements and theoretical analysis of shallow bound exciton complexes in bulk ZnO. Polarization and angular dependencies of magneto-photoluminescence spectra at 5 T suggest that the upper valence band has $Gam ma_7$ symmetry. Nitrogen doping leads to the formation of an acceptor center that compensates shallow donors. This is confirmed by the observation of excitons bound to ionized donors in nitrogen doped ZnO. The strongest transition in the ZnO:N ($I_9$ transition) is associated with a donor bound exciton. This conclusion is based on its thermalization behavior in temperature-dependent magneto-transmission measurements and is supported by comparison of the thermalization properties of the $I_9$ and $I_4$ emission lines in temperature-dependent magneto-photoluminescence investigations.
Uniaxial hot pressing has been used to obtain ceramics based on zinc oxide, and their optical, x-ray-structure, luminescence, and scintillation characteristics have been studied. It is shown that, by changing the concentration of the dopant (Ga) and the codopant (N), it is possible to change the intensities of the edge band (397.5 nm) and the intraband luminescence (510 nm) of the ZnO luminescence, as well as their ratio. Undoped ZnO ceramic has good transparency in the visible region and fairly high luminous yield: 9050 photons per MeV. Ceramic ZnO:Ga possesses intense edge luminescence with a falloff time of about 1 ns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا