ﻻ يوجد ملخص باللغة العربية
We study Johnson-Nyquist noise in macroscopically inhomogeneous disordered metals and give a microscopic derivation of the correlation function of the scalar electric potentials in real space. Starting from the interacting Hamiltonian for electrons in a metal and the random phase approximation, we find a relation between the correlation function of the electric potentials and the density fluctuations which is valid for arbitrary geometry and dimensionality. We show that the potential fluctuations are proportional to the solution of the diffusion equation, taken at zero frequency. As an example, we consider networks of quasi-1D disordered wires and give an explicit expression for the correlation function in a ring attached via arms to absorbing leads. We use this result in order to develop a theory of dephasing by electronic noise in multiply-connected systems.
We consider the effect of dephasing on a quantum dot which injects single electrons on a chiral edge channel of the quantum Hall effect. Dephasing is described by the coupling of the dot to a bosonic bath which represents the electromagnetic environm
Recent experiments by F. Yoshihara et al. [Phys. Rev. Lett. 97, 167001 (2006)] and by K. Kakuyanagi et al. (cond-mat/0609564) provided information on decoherence of the echo signal in Josephson-junction flux qubits at various bias conditions. These r
We extract the phase coherence of a qubit defined by singlet and triplet electronic states in a gated GaAs triple quantum dot, measuring on timescales much shorter than the decorrelation time of the environmental noise. In this non-ergodic regime, we
Electron-electron interactions give rise to the correction, deltasigma^{int}(omega), to the ac magnetoconductivity, sigma(omega), of a clean 2D electron gas that is periodic in omega_c^{-1}, where omega_c is the cyclotron frequency. Unlike convention
Quantum coherence of superposed states, especially of entangled states, is indispensable for many quantum technologies. However, it is vulnerable to environmental noises, posing a fundamental challenge in solid-state systems including spin qubits. He