ﻻ يوجد ملخص باللغة العربية
Given a topological orientable surface of finite or infinite type equipped with a pair of pants decomposition $mathcal{P}$ and given a base complex structure $X$ on $S$, there is an associated deformation space of complex structures on $S$, which we call the Fenchel-Nielsen Teichmuller space associated to the pair $(mathcal{P},X)$. This space carries a metric, which we call the Fenchel-Nielsen metric, defined using Fenchel-Nielsen coordinates. We studied this metric in the papers cite{ALPSS}, cite{various} and cite{local}, and we compared it to the classical Teichmuller metric (defined using quasi-conformal mappings) and to another metric, namely, the length spectrum, defined using ratios of hyperbolic lengths of simple closed curves metric. In the present paper, we show that under a change of pair of pants decomposition, the identity map between the corresponding Fenchel-Nielsen metrics is not necessarily bi-Lipschitz. The results complement results obtained in the previous papers and they show that these previous results are optimal.
Using tropical geometry, Mikhalkin has proved that every smooth complex hypersurface in $mathbb{CP}^{n+1}$ decomposes into pairs of pants: a pair of pants is a real compact $2n$-manifold with cornered boundary obtained by removing an open regular nei
A Riemann surface $X$ is said to be of emph{parabolic type} if it supports a Greens function. Equivalently, the geodesic flow on the unit tangent of $X$ is ergodic. Given a Riemann surface $X$ of arbitrary topological type and a hyperbolic pants deco
Let $Sigma_g$ be a compact, connected, orientable surface of genus $g geq 2$. We ask for a parametrization of the discrete, faithful, totally loxodromic representations in the deformation space ${rm Hom}(pi_1(Sigma_g), {rm SU}(3,1))/{rm SU}(3,1)$. We
We construct a quasiconformally homogeneous hyperbolic Riemann surface-other than the hyperbolic plane-that does not admit a bounded pants decomposition. Also, given a connected orientable topological surface of infinite type with compact boundary co
We investigate the terms arising in an identity for hyperbolic surfaces proved by Luo and Tan, namely showing that they vary monotonically in terms of lengths and that they verify certain convexity properties. Using these properties, we deduce two re