ﻻ يوجد ملخص باللغة العربية
We continue our exercises with the universal $R$-matrix based on the Khoroshkin and Tolstoy formula. Here we present our results for the case of the twisted affine Kac--Moody Lie algebra of type $A^{(2)}_2$. Our interest in this case is inspired by the fact that the Tzitzeica equation is associated with $A^{(2)}_2$ in a similar way as the sine-Gordon equation is related to $A^{(1)}_1$. The fundamental spin-chain Hamiltonian is constructed systematically as the logarithmic derivative of the transfer matrix. $L$-operators of two types are obtained by using q-deformed oscillators.
We propose a convenient orthogonal basis of the Hilbert space for the Izergin-Korepin model (or the quantum spin chain associated with the $A^{(2)}_{2}$ algebra). It is shown that the monodromy-matrix elements acting on the basis take relatively simp
We consider the Izergin-Korepin determinant [1] together with another determinant which was invented by Kuperberg [2]. He used these determinants to prove a formula for the total number of half-turn symmetric alternating sign matrices of even order c
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation funct
The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without U(1)-symmetry, is studied via the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K-
We study smooth SU(2) solutions of the Hitchin equations on R^2, with the determinant of the complex Higgs field being a polynomial of degree n. When n>=3, there are moduli spaces of solutions, in the sense that the natural L^2 metric is well-defined