ﻻ يوجد ملخص باللغة العربية
We consider propagation, storing and retrieval of slow light (probe beam) in a resonant atomic medium illuminated by two control laser beams of larger intensity. The probe and two control beams act on atoms in a tripod configuration of the light-matter coupling. The first control beam is allowed to have an orbital angular momentum (OAM). Application of the second vortex-free control laser ensures the adiabatic (lossles) propagation of the probe beam at the vortex core where the intensity of the first control laser goes to zero. Storing and release of the probe beam is accomplished by switching off and on the control laser beams leading to the transfer of the optical vortex from the first control beam to the regenerated probe field. A part of the stored probe beam remains frozen in the medium in the form of atomic spin excitations, the number of which increases with increasing the intensity of the second control laser. We analyse such losses in the regenerated probe beam and provide conditions for the optical vortex of the control beam to be transferred efficiently to the restored probe beam.
We predict that a photon condensate inside a dye-filled microcavity forms long-lived spatial structures that resemble vortices when incoherently excited by a focused pump orbiting around the cavity axis. The finely structured density of the condensat
We investigate quantum nonlinear effects at a level of individual quanta in a double tripod atom-light coupling scheme involving two atomic Rydberg states. In such a scheme the slow light coherently coupled to strongly interacting Rydberg states repr
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four copropagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowin
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or
Recent experiments have proved that the response to short laser pulses of common optical media, such as air or Oxygen, can be described by focusing Kerr and higher order nonlinearities of alternating signs. Such media support the propagation of stead