ﻻ يوجد ملخص باللغة العربية
We present axisymmetric simulations of the coupled convective and radiative regions in the Sun in order to investigate the angular momentum evolution of the radiative interior. Both hydrodynamic and magnetohydrodynamic models were run. We find an initial rapid adjustment in which the dif- ferential rotation of the convection zone viscously spreads into the radiative interior, thus forming a tachocline. In polar regions the subsequent spread of the tachocline is halted by a counter-rotating meridional circulation cell which develops in the tachocline. Near the equator such a counter-rotating cell is more intermittent and the tachocline penetration depth continues to increase, albeit more slowly than previously predicted. In the magnetic models we impose a dipolar field initially confined to the radiative interior. The behavior of the magnetic models is very similar to their non-magnetic counter- parts. Despite being connected to the convection zone, very little angular momentum is transferred between the convective and radiative regions. Therefore, while it appears that a magnetic field is not necessary to stop the tachocline spread, it also does not promote such a spread if connected to the convection zone.
We present an attempt to reconcile the solar tachocline glitch, a thin layer immediately beneath the convection zone in which the seismically inferred sound speed in the Sun exceeds corresponding values in standard solar models, with a degree of part
Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an e
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity
Annual oscillations have been detected in many indices of solar activity during many cycles. Recent multi spacecraft observations of coronal bright points revealed slow retrograde toroidal phase drift (with the speed of 3 m/s of 1 yr oscillations, wh
The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cycli