ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection and electron heating in low-beta plasmas

153   0   0.0 ( 0 )
 نشر من قبل Alexander Schekochihin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Alessandro Zocco




اسأل ChatGPT حول البحث

A minimal model for magnetic reconnection and, generally, low-frequency dynamics in low-beta plasmas is proposed. The model combines analytical and computational simplicity with physical realizability: it is a rigorous limit of gyrokinetics for plasma beta of order the electron-ion mass ratio. The model contains collisions and can be used both in the collisional and collisionless reconnection regimes. It includes gyrokinetic ions (not assumed cold) and allows for the topological rearrangement of the magnetic field lines by either resistivity or electron inertia, whichever predominates. The two-fluid dynamics are coupled to electron kinetics --- electrons are not assumed isothermal and are described by a reduced drift-kinetic equation. The model therefore allows for irreversibility and conversion of magnetic energy into electron heat via parallel phase mixing in velocity space. An analysis of the exchanges between various forms of free energy and its conversion into electron heat is provided. It is shown how all relevant linear waves and regimes of the tearing instability (collisionless, semicollisional and fully resistive) are recovered in various limits of our model. An efficient way to simulate our equations numerically is proposed, via the Hermite representation of the velocity space. It is shown that small scales in velocity space will form, giving rise to a shallow Hermite-space spectrum, whence it is inferred that, for steady-state or sufficiently slow dynamics, the electron heating rate will remain finite in the limit of vanishing collisionality.



قيم البحث

اقرأ أيضاً

Properties of plasmoid-dominated turbulent reconnection in a low-$beta$ background plasma are investigated by resistive magnetohydrodynamic (MHD) simulations. In the $beta_{rm in} < 1$ regime, where $beta_{rm in}$ is plasma $beta$ in the inflow regio n, the reconnection site is dominated by shocks and shock-related structures and plasma compression is significant. The effective reconnection rate increases from $0.01$ to $0.02$ as $beta_{rm in}$ decreases. We hypothesize that plasma compression allows faster reconnection rate, and then we estimate a speed-up factor, based on a compressible MHD theory. We validate our prediction by a series of MHD simulations. These results suggest that the plasmoid-dominated reconnection can be twice faster than expected in the $beta ll 1$ environment in a solar corona.
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
Electron dynamics surrounding the X-line in magnetopause-type asymmetric reconnection is investigated using a two-dimensional particle-in-cell simulation. We study electron properties of three characteristic regions in the vicinity of the X-line. The fluid properties, velocity distribution functions (VDFs), and orbits are studied and cross-compared. On the magnetospheric side of the X-line, the normal electric field enhances the electron meandering motion from the magnetosheath side. The motion leads to a crescent-shaped component in the electron VDF, in agreement with recent studies. On the magnetosheath side of the X-line, the magnetic field line is so stretched in the third dimension that its curvature radius is comparable with typical electron Larmor radius. The electron motion becomes nonadiabatic, and therefore the electron idealness is no longer expected to hold. Around the middle of the outflow regions, the electron nonidealness is coincident with the region of the nonadiabatic motion. Finally, we introduce a finite-time mixing fraction (FTMF) to evaluate electron mixing. The FTMF marks the magnetospheric side of the X-line, where the nonideal energy dissipation occurs.
Reduced fluid models including electron inertia and ion finite Larmor radius corrections are derived asymptotically, both from fluid basic equations and from a gyrofluid model. They apply to collisionless plasmas with small ion-to-electron equilibriu m temperature ratio and low $beta_e$, where $beta_e$ indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong, constant and uniform magnetic guide field. The consistency between the fluid and gyrofluid approaches is ensured when choosing ion closure relations prescribed by the underlying ordering. A two-field reduction of the gyrofluid model valid for arbitrary equilibrium temperature ratio is also introduced, and is shown to have a noncanonical Hamiltonian structure. This model provides a convenient framework for studying kinetic Alfven wave turbulence, from MHD to sub-$d_e$ scales (where $d_e$ holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range associated with a $k_perp^{-7/3}$ transverse magnetic spectrum, the generalized helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.
We study magnetic reconnection events in a turbulent plasma within the two-fluid theory. By identifying the diffusive regions, we measure the reconnection rates as function of the conductivity and current sheet thickness. We have found that the recon nection rate scales as the squared of the inverse of the current sheets thickness and is independent of the aspect ratio of the diffusive region, in contrast to other analytical, e.g. the Sweet-Parker and Petscheck, and numerical models. Furthermore, while the reconnection rates are also proportional to the square inverse of the conductivity, the aspect ratios of the diffusive regions, which exhibit values in the range of $0.1-0.9$, are not correlated to the latter. Our findings suggest a new expression for the magnetic reconnection rate, which, after experimental verification, can provide a further understanding of the magnetic reconnection process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا