ﻻ يوجد ملخص باللغة العربية
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of large numbers. A result similar to Bahadurs representation of quantiles is established for the mean of a function of the marginal quantiles. In particular, it is shown that [sqrt{n}Biggl(frac{1}{n}sum_{i=1}^nphibigl(X_{n:i}^{(1)},...,X_{n:i}^{(d)}bigr)-bar{gamma}Biggr)=frac{1}{sqrt{n}}sum_{i=1}^nZ_{n,i}+mathrm{o}_P(1)] as $nrightarrowinfty$, where $bar{gamma}$ is a constant and $Z_{n,i}$ are i.i.d. random variables for each $n$. This leads to the central limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The results are established under very general conditions. These conditions are shown to be satisfied in many commonly occurring situations.
We consider the problem of optimal transportation with general cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We extend results in [19] and prove asymptotic stability of both optimal transport maps and poten
For a joint model-based and design-based inference, we establish functional central limit theorems for the Horvitz-Thompson empirical process and the Hajek empirical process centered by their finite population mean as well as by their super-populatio
We consider noisy non-synchronous discrete observations of a continuous semimartingale with random volatility. Functional stable central limit theorems are established under high-frequency asymptotics in three setups: one-dimensional for the spectral
In this paper, we develop a general approach to proving global and local uniform limit theorems for the Horvitz-Thompson empirical process arising from complex sampling designs. Global theorems such as Glivenko-Cantelli and Donsker theorems, and loca
This paper derives central limit and bootstrap theorems for probabilities that sums of centered high-dimensional random vectors hit hyperrectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for probabilit