ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the Universal CIV Mass Density at z~6 from Early IR Spectra Obtained with the Magellan FIRE Spectrograph

42   0   0.0 ( 0 )
 نشر من قبل Robert Simcoe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new determination of the intergalactic CIV mass density at 4.3 < z < 6.3. Our constraints are derived from high signal-to-noise spectra of seven quasars at z > 5.8 obtained with the newly commissioned FIRE spectrograph on the Magellan Baade telescope, coupled with six observations of northern objects taken from the literature. We confirm the presence of a downturn in the CIV abundance at <z>=5.66 by a factor of 4.1 relative to its value at <z>=4.96, as measured in the same sightlines. In the FIRE sample, a strong system previously reported in the literature as CIV at z=5.82 is re-identified as MgII at z=2.78, leading to a substantial downward revision in $Omega_{CIV}$ for these prior studies. Additionally we confirm the presence of at least two systems with low-ionization CII, SiII, and OI absorption but relatively weak signal from CIV. The latter systems systems may be of interest if the downward trend in $Omega_{CIV}$ at high redshift is driven in part by ionization effects.

قيم البحث

اقرأ أيضاً

172 - F. Calura 2020
We report on ALMA observations of D1, a system at z~6.15 with stellar mass M_* ~ 10^7 M_sun containing globular cluster (GC) precursors, strongly magnified by the galaxy cluster MACS J0416.1-2403. Since the discovery of GC progenitors at high redshif t, ours is the first attempt to probe directly the physical properties of their neutral gas through infrared observations. A careful analysis of our dataset, performed with a suitable procedure designed to identify faint narrow lines and which can test various possible values for the unknown linewidth value, allowed us to identify a 4-sigma tentative detection of [CII] emission with intrinsic luminosity L_CII=(2.9 +/- 1.4) 10^6 L_sun, one of the lowest values ever detected at high redshift. This study offers a first insight on previously uncharted regions of the L_CII-SFR relation. Despite large uncertainties affecting our measure of the star formation rate, if taken at face value our estimate lies more than 1 dex below the values observed in local and high redshift systems. Our weak detection indicates a deficiency of [CII] emission, possibly ascribed to various explanations, such as a low-density gas and/or a strong radiation field caused by intense stellar feedback, and a low metal content. From the non-detection in the continuum we derive constraints on the dust mass, with 3-sigma upper limit values as low as a few 10^4 M_sun, consistent with the values measured in local metal-poor galaxies.
We present the results of a systematic search for galaxies in the redshift range z = 6 - 9, within the new, deep, near-infrared imaging of the Hubble Ultra Deep Field provided by the Wide Field Camera 3 (WFC3) on HST. We have performed full SED fitti ng to the optical+infrared photometry of all high-redshift galaxy candidates detected at greater than 5-sigma in at least one of the WFC3/IR broad-band filters. After rejection of contaminants, the result is a sample of 49 galaxies with primary redshift solutions z > 5.9. Our sample, selected without recourse to specific colour cuts, re-selects all but the faintest one of the 16 z-drops selected by Oesch et al. (2009), recovers all 5 of the Y-drops reported by Bouwens et al. (2009), and adds a further 29 galaxy candidates, of which 12 lie beyond z = 6.3, and 4 lie beyond z = 7. We also present confidence intervals on our photometric redshift estimates, and caution that acceptable low-redshift (z < 2) solutions exist for 28 out of the 37 galaxies at z > 6.3, and for all 8 galaxy candidates at z > 7.5. Nevertheless, the very highest redshift candidates appear to be strongly clustered in the field. We derive new estimates of the ultraviolet galaxy luminosity function at z = 7 and z = 8. Where our results are most robust, at a characteristic luminosity M(1500) ~ -19.5 (AB), we find that the comoving number density of galaxies declines by a factor of ~ 2.5 between z = 6 and z = 7, and by a further factor of ~ 2 by z = 8. These results suggest that it is difficult for the observed population of high-redshift star-forming galaxies to achieve reionisation by z ~ 6 without a significant contribution from galaxies well below the detection limits, plus alterations in the escape fraction of ionising photons and/or continued vigorous star formation at z > 15.
Modelling reionization often requires significant assumptions about the properties of ionizing sources. Here, we infer the total output of hydrogen-ionizing photons (the ionizing emissivity, $dot{N}_textrm{ion}$) at $z=4-14$ from current reionization constraints, being maximally agnostic to the properties of ionizing sources. We use a Bayesian analysis to fit for a non-parametric form of $dot{N}_textrm{ion}$, allowing us to flexibly explore the entire prior volume. We infer a declining $dot{N}_textrm{ion}$ with redshift at $z>6$, which can be used as a benchmark for reionization models. Model-independent reionization constraints from the CMB optical depth and Ly$alpha$ and Ly$beta$ forest dark pixel fraction produce $dot{N}_textrm{ion}$ evolution ($dlog_{10}dot{N}_textrm{ion}/dz|_{z=6rightarrow8} = -0.31pm0.35$ dex) consistent with the declining UV luminosity density of galaxies, assuming constant ionizing photon escape fraction and efficiency. Including measurements from Ly$alpha$ damping of galaxies and quasars produces a more rapid decline: $dlog_{10}dot{N}_textrm{ion}/dz|_{z=6rightarrow8} =-0.44pm0.22$ dex, steeper than the declining galaxy luminosity density (if extrapolated beyond $M_mathrm{UV} lesssim -13$), and constrains the mid-point of reionization to $z = 6.93pm0.14$.
We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2 obtained with the FIRE spectrometer on the Magellan Baade telescope. The sample was selected from the WISP survey, which uses the near-infrared grism of the Hubb le Space Telescope Wide Field Camera 3 to detect emission-line galaxies over 0.3 < z < 2.3. Our FIRE follow-up spectroscopy (R~5000) over 1.0-2.5 micron permits detailed measurements of physical properties of the z~2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M_sun yr-1. We derive a median metallicity for the sample of ~0.45 Z_sun, and the estimated stellar masses range from ~10^8.5 - 10^9.5 M_sun. The average ionization parameters measured for the sample are typically much higher than what is found for local star-forming galaxies. We derive composite spectra from the FIRE sample, from which we infer typical nebular electron densities of ~100-400 cm^-3. Based on the location of the galaxies and composite spectra on BPT diagrams, we do not find evidence for significant AGN activity in the sample. Most of the galaxies as well as the composites are offset in the BPT diagram toward higher [O III]/H-beta at a given [N II]/H-alpha, in agreement with other observations of z > 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/H-beta versus [S II]/H-alpha diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star-forming sequence in the [O III]/H-beta versus [N II]/H-alpha diagram. We speculate that the elevated nitrogen abundance could result from substantial numbers of Wolf-Rayet stars in starbursting galaxies at z~2. (Abridged)
We present final statistics from a survey for intervening MgII absorption towards 100 quasars with emission redshifts between $z=3.55$ and $z=7.08$. Using infrared spectra from Magellan/FIRE, we detect 279 cosmological MgII absorbers, and confirm tha t the incidence rate of $W_r>0.3 AA$ MgII absorption per comoving path length does not evolve measurably between $z=0.25$ and $z=7$. This is consistent with our detection of seven new MgII systems at $z>6$, a redshift range that was not covered in prior searches. Restricting to relatively strong MgII systems ($W_r>1$AA), there is significant evidence for redshift evolution. These systems roughly double in number density between $z=0$ and $z=2$-$3$, but decline by an order of magnitude from this peak by $zsim 6$. This evolution mirrors that of the global star formation rate density, which could reflect a connection between star formation feedback and strong MgII absorbers. We compared our results to the Illustris cosmological simulation at $z=2$-$4$ by assigning absorption to catalogued dark-matter halos and by direct extraction of spectra from the simulation volume. To reproduce our results using the halo catalogs, we require circumgalactic (CGM) MgII envelopes within halos of progressively smaller mass at earlier times. This occurs naturally if we define the lower integration cutoff using SFR rather than mass. MgII profiles calculated directly from the Illustris volume yield far too few strong absorbers. We argue that this arises from unresolved phase space structure of CGM gas, particularly from turbulent velocities on sub-mesh scales. The presence of CGM MgII at $z>6$-- just $sim 250$ Myr after the reionization redshift implied by Planck--suggests that enrichment of intra-halo gas may have begun before the presumed host galaxies stellar populations were mature and dynamically relaxed. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا