ترغب بنشر مسار تعليمي؟ اضغط هنا

Redshift Determination and CO Line Excitation Modeling for the Multiply-Lensed Galaxy HLSW-01

37   0   0.0 ( 0 )
 نشر من قبل Kimberly Scott
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the redshift measurement and CO line excitation of HERMES J105751.1+573027 (HLSW-01), a strongly lensed submillimeter galaxy discovered in Herschel/SPIRE observations as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). HLSW-01 is an ultra-luminous galaxy with an intrinsic far-infrared luminosity of 1.4x10^(13) solar luminosities, and is lensed by a massive group of galaxies into at least four images with a total magnification of 10.9+/-0.7. With the 100 GHz instantaneous bandwidth of the Z-Spec instrument on the Caltech Submillimeter Observatory, we robustly identify a redshift of z=2.958+/-0.007 for this source, using the simultaneous detection of four CO emission lines (J = 7-6, J = 8-7, J = 9-8, and J = 10-9). Combining the measured line fluxes for these high-J transitions with the J = 1-0, J = 3-2 and J = 5-4 line fluxes measured with the Green Bank Telescope, the Combined Array for Research in Millimeter Astronomy, and the Plateau de Bure Interferometer, respectively, we model the physical properties of the molecular gas in this galaxy. We find that the full CO spectral line energy distribution is well described by warm, moderate-density gas with Tkin = 86-235 K and n(H2) = (1.1-3.5)x10^3 cm^(-3). However, it is possible that the highest-J transitions are tracing a small fraction of very dense gas in molecular cloud cores, and two-component models that include a warm/dense molecular gas phase with Tkin ~ 200 K, n(H2) ~ 10^5 cm^(-3) are also consistent with these data. Higher signal-to-noise measurements of the J(upper) > 7 transitions with high spectral resolution, combined with high spatial resolution CO maps, are needed to improve our understanding of the gas excitation, morphology, and dynamics of this interesting high-redshift galaxy.

قيم البحث

اقرأ أيضاً

We report the discovery of a bright ($f(250mum) > 400$ mJy), multiply-lensed submillimeter galaxy obj in {it Herschel}/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880mum Submillimeter Array observations resolve a t least four images with a large separation of $sim 9arcsec$. A high-resolution adaptive optics $K_p$ image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of $z=2.9575$, and the lensing model gives a total magnification of $mu sim 11 pm 1$. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, $88 pm 3$ K. We derive a lensing-corrected total IR luminosity of $(1.43 pm 0.09) times 10^{13}, mathrm{L}_{odot}$, implying a star formation rate of $sim 2500, mathrm{M}_{odot}, mathrm{yr}^{-1}$. However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early {it Herschel} data, and many more are expected as additional data are collected.
The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on the accurate knowledge of the galaxy mean re dshift $langle z rangle$. We investigate the possibility of measuring $langle z rangle$ with an accuracy better than $0.002,(1+z)$, in ten tomographic bins spanning the redshift interval $0.2<z<2.2$, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation to understand the advantages, complementarity, but also shortcoming of two standard approaches: the direct calibration of $langle z rangle$ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution function (zPDF) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation that we analyse with a standard galaxy spectral energy distribution template-fitting code. Such procedure produces photometric redshifts with realistic biases, precision and failure rate. We find that the Euclid current design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of $>99.8%$. The zPDF approach could also be successful if we debias the zPDF using a spectroscopic training sample. This approach requires deep imaging data, but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the debiasing method and confirm our finding by applying it to real-world weak-lensing data sets (COSMOS and KiDS+VIKING-450).
We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.3 from the center of the foreground galaxy. The observations probe a physical scale of $sim$1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.
We report the detection of CO 5-4, 3-2, and 1-0 emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HLSW-01 at z=2.9574+/-0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter- wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of ~9, and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L(CO 1-0) = (4.17+/-0.41), L(CO 3-2) = (3.96+/-0.20) and L(CO 5-4) = (3.45+/-0.20) x 10^10 (mu_L/10.9)^-1 Kkm/s pc^2, corresponding to luminosity ratios of r_31 = 0.95+/-0.10, r_53 = 0.87+/-0.06, and r_51 = 0.83+/-0.09. This suggests a total molecular gas mass of Mgas = 3.3 x 10^10 (alpha_CO/0.8) (mu_L/10.9)^-1 Msun. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, `wet (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs, and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing.
109 - T.-T. Yuan 2011
We present the first metallicity gradient measurement for a grand-design face-on spiral galaxy at z~1.5. This galaxy has been magnified by a factor of 22$times$ by a massive, X-ray luminous galaxy cluster MACS,J1149.5+2223 at z=0.544. Using the Laser Guide Star Adaptive Optics aided integral field spectrograph OSIRIS on KECK II, we target the Halpha emission and achieve a spatial resolution of 0.1, corresponding to a source plane resolution of 170 pc. The galaxy has well-developed spiral arms and the nebular emission line dynamics clearly indicate a rotationally supported disk with V_{rot}/sigma~4. The best-fit disk velocity field model yields a maximum rotation of V_{rot} sin{i}=150$pm$15 km s^{-1}, and a dynamical mass of M_{dyn}=1.3$pm0.2times10^{10}csc^2(i) M_{odot} (within 2.5,kpc), where the inclination angle i=45$pm10^{circ}$. Based on the [NII] and Halpha ratios, we measured the radial chemical abundance gradient from the inner hundreds of parsecs out to ~5 kpc. The slope of the gradient is -0.16$pm$0.02 dex kpc$^{-1}$, significantly steeper than the gradient of late-type or early-type galaxies in the local universe. If representative of disk galaxies at z~1.5, our results support an inside-out disk formation scenario in which early infall/collapse in the galaxy center builds a chemically enriched nucleus, followed by slow enrichment of the disk over the next 9 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا