ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit

132   0   0.0 ( 0 )
 نشر من قبل Wiebke Guichard gui
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A neutral quantum particle with magnetic moment encircling a static electric charge acquires a quantum mechanical phase (Aharonov-Casher effect). In superconducting electronics the neutral particle becomes a fluxon that moves around superconducting islands connected by Josephson junctions. The full understanding of this effect in systems of many junctions is crucial for the design of novel quantum circuits. Here we present measurements and quantitative analysis of fluxon interference patterns in a six Josephson junction chain. In this multi-junction circuit the fluxon can encircle any combination of charges on five superconducting islands, resulting in a complex pattern. We compare the experimental results with predictions of a simplified model that treats fluxons as independent excitations and with the results of the full diagonalization of the quantum problem. Our results demonstrate the accuracy of the fluxon interference description and the quantum coherence of these arrays.



قيم البحث

اقرأ أيضاً

In a recent Letter, Bergsten and co-authors have studied the resistance oscillations with gate voltage and magnetic field in arrays of semiconductor rings and interpreted the oscillatory magnetic field dependence as Altshuler-Aronov-Spivak (AAS) osci llations and oscillatory dependence on gate voltage as the Aharonov-Casher (AC) effect. This Comment shows that Bergsten and co-authors incorrectly identified AAS effect as a source of resistance oscillations in magnetic field, that spin relaxation in their experimental setting is strong enough to destroy oscillatory effects of spin origin, and that the oscillations are caused by changes in carrier density and the Fermi energy by gate, and are unrelated to spin.
We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped element LC oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be different from those studied in microcavity frequency combs and mode-locked lasers. We then address the fate of the comb-like spectrum in the regime of strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.
Ring structures fabricated from HgTe/HgCdTe quantum wells have been used to study Aharonov-Bohm type conductance oscillations as a function of Rashba spin-orbit splitting strength. We observe non-monotonic phase changes indicating that an additional phase factor modifies the electron wave function. We associate these observations with the Aharonov-Casher effect. This is confirmed by comparison with numerical calculations of the magneto-conductance for a multichannel ring structure within the Landauer-Buttiker formalism.
Interference of standing waves in electromagnetic resonators forms the basis of many technologies, from telecommunications and spectroscopy to detection of gravitational waves. However, unlike the confinement of light waves in vacuum, the interferenc e of electronic waves in solids is complicated by boundary properties of the crystal, notably leading to electron guiding by atomic-scale potentials at the edges. Understanding the microscopic role of boundaries on coherent wave interference is an unresolved question due to the challenge of detecting charge flow with submicron resolution. Here we employ Fraunhofer interferometry to achieve real-space imaging of cavity modes in a graphene Fabry-Perot resonator, embedded between two superconductors to form a Josephson junction. By directly visualizing current flow using Fourier methods, our measurements reveal surprising redistribution of current on and off resonance. These findings provide direct evidence of separate interference conditions for edge and bulk currents and reveal the ballistic nature of guided edge states. Beyond equilibrium, our measurements show strong modulation of the multiple Andreev reflection amplitude on an off resonance, a direct measure of the gate-tunable change of cavity transparency. These results demonstrate that, contrary to the common belief, electron interactions with realistic disordered edges facilitate electron wave interference and ballistic transport.
The coexistence of Rashba and Dresselhaus spin-orbit interactions (SOIs) in semiconductor quantum wells leads to an anisotropic effective field coupled to carriers spins. We demonstrate a gate-controlled anisotropy in Aharonov-Casher (AC) spin interf erometry experiments with InGaAs mesoscopic rings by using an in-plane magnetic field as a probe. Supported by a perturbation-theory approach, we find that the Rashba SOI strength controls the AC resistance anisotropy via spin dynamic and geometric phases and establish ways to manipulate them by employing electric and magnetic tunings. Moreover, assisted by two-dimensional numerical simulations, we identify a remarkable anisotropy inversion in our experiments attributed to a sign change in the renormalized linear Dresselhaus SOI controlled by electrical means, which would open a door to new possibilities for spin manipulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا