ترغب بنشر مسار تعليمي؟ اضغط هنا

Wave function mapping in graphene quantum dots with soft confinement

97   0   0.0 ( 0 )
 نشر من قبل Markus Morgenstern
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using low-temperature scanning tunneling spectroscopy, we map the local density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphene-like. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moir{e} potential and a 10% penetration of an Ir surface resonance



قيم البحث

اقرأ أيضاً

We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
90 - S. Stobbe , J. M. Hvam , 2010
The spontaneous emission rate of excitons strongly confined in quantum dots is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission ra te is proportional to the probability that the electron and the hole are located at the same point or region in space, i.e. they must coincide spatially to recombine. Here we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap integral, and the probability of electrons and holes coinciding and find that the frequency dependence of the envelope wave function overlap integral is very different from that expected from the common interpretation. We show that these theoretical considerations lead to predictions for measurements. We compare our qualitative predictions with recent measurements of the wave function overlap and find good agreement.
We investigate ground and excited state transport through small (d = 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the ground state energy as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zemann splitting of spin states is measured. The results are compatible with a g-factor of 2 and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected for graphene.
We report measurements on a graphene quantum dot with an integrated graphene charge detector. The quantum dot device consists of a graphene island (diameter approx. 200 nm) connected to source and drain contacts via two narrow graphene constrictions. From Coulomb diamond measurements a charging energy of 4.3 meV is extracted. The charge detector is based on a 45 nm wide graphene nanoribbon placed approx. 60 nm from the island. We show that resonances in the nanoribbon can be used to detect individual charging events on the quantum dot. The charging induced potential change on the quantum dot causes a step-like change of the current in the charge detector. The relative change of the current ranges from 10% up to 60% for detecting individual charging events.
Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels However, creating confining structures with nanometer precision in shape, size and location, remains as an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement. Here, a scanning tunneling microscope (STM) is used to create graphene nanopatterns, with sub-nanometer precision, by the collective manipulation of a large number of H atoms. Individual graphene nanostructures are built at selected locations, with predetermined orientations and shapes, and with dimensions going all the way from 2 nanometers up to 1 micron. The method permits to erase and rebuild the patterns at will, and it can be implemented on different graphene substrates. STM experiments demonstrate that such graphene nanostructures confine very efficiently graphene Dirac quasiparticles, both in zero and one dimensional structures. In graphene quantum dots, perfectly defined energy band gaps up to 0.8 eV are found, that scale as the inverse of the dots linear dimension, as expected for massless Dirac fermions
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا