We show that the correlation dynamics in coherently excited doubly excited resonances of helium can be followed in real time by two-photon interferometry. This approach promises to map the evolution of the two-electron wave packet onto experimentally easily accessible non-coincident single electron spectra. We analyze the interferometric signal in terms of a semi-analytical model which is validated by a numerical solution of the time-dependent two-electron Schrodinger equation in its full dimensionality.
We describe a numerical method that simulates the interaction of the helium atom with sequences of femtosecond and attosecond light pulses. The method, which is based on the close-coupling expansion of the electronic configuration space in a B-spline
bipolar spherical harmonic basis, can accurately reproduce the excitation and single ionization of the atom, within the electrostatic approximation. The time dependent Schrodinger equation is integrated with a sequence of second-order split-exponential unitary propagators. The asymptotic channel-, energy- and angularly-resolved photoelectron distributions are computed by projecting the wavepacket at the end of the simulation on the multichannel scattering states of the atom, which are separately computed within the same close-coupling basis. This method is applied to simulate the pump-probe ionization of helium in the vicinity of the $2s/2p$ excitation threshold of the He$^+$ ion. This work confirms the qualitative conclusions of one of our earliest publications [L Argenti and E Lindroth, Phys. Rev. Lett. {bf 105}, 53002 (2010)], in which we demonstrated the control of the $2s/2p$ ionization branching-ratio. Here, we take those calculations to convergence and show how correlation brings the periodic modulation of the branching ratios in almost phase opposition. The residual total ionization probability to the $2s+2p$ channels is dominated by the beating between the $sp_{2,3}^+$ and the $sp_{2,4}^+$ doubly excited states, which is consistent with the modulation of the complementary signal in the $1s$ channel, measured in 2010 by Chang and co-workers~[S Gilbertson~emph{et al.}, Phys. Rev. Lett. {bf 105}, 263003 (2010)].
In this work, we study the quantum entanglement for doubly excited resonance states in helium by using highly correlated Hylleraas type functions to represent such states of the two-electron system. The doubly-excited resonance states are determined
by calculation of density of resonance states under the framework of the stabilization method. The spatial (electron-electron orbital) entanglement measures for the low-lying doubly excited 2s2, 2s3s, and 2p2 1Se states are carried out. Once a resonance state wave function is obtained, the linear entropy and von Neumann entropy for such a state are quantified using the Schmidt-Slater decomposition method. To check the consistence, linear entropy is also determined by solving analytically the needed four-electron (12-dimensional) integrals.
We investigate the role of electron correlation in the two-photon double ionization of helium for ultrashort XUV pulses with durations ranging from a hundred attoseconds to a few femtoseconds. We perform time-dependent ab initio calculations for puls
es with mean frequencies in the so-called sequential regime (photon energy above 54.4 eV). Electron correlation induced by the time correlation between emission events manifests itself in the angular distribution of the ejected electrons, which strongly depends on the energy sharing between them. We show that for ultrashort pulses two-photon double ionization probabilities scale non-uniformly with pulse duration depending on the energy sharing between the electrons. Most interestingly we find evidence for an interference between direct (nonsequential) and indirect (sequential) double photo-ionization with intermediate shake-up states, the strength of which is controlled by the pulse duration. This observation may provide a route toward measuring the pulse duration of FEL pulses.
The recoil, vacuum polarization and electron vertex corrections of first and second orders in the fine structure constant $alpha$ and the ratio of electron to muon and electron to alpha-particle masses are calculated in the hyperfine splitting of the
$1s^{(e)}_{1/2}2s^{(mu)}_{1/2}$ state of muonic helium atom (mu e ^4_2He) on the basis of a perturbation theory. We obtain total result for the muonically excited state hyperfine splitting $Delta u^{hfs}=4295.66$ MHz which improves previous calculations due to the account of new corrections and more accurate treatment of the electron vertex contribution.
We describe numerically the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned atomic target, specifically, the excited state Ne$^*(1s^22s^22p^5[{}^2text{P}^text{o}_{1/2}]3s[^1text{P}^o])$. We co
mpute the excited atomic state by applying the time-dependent restricted-active-space self-consistent field (TD-RASSCF) method to fully account for the electronic correlation. We find that correlation-assisted ionization channels can dominate over channels accessible without correlation. We also observe that the rotation of the photoelectron momentum distribution by circularly polarized laser pulses compared to the case of linear polarization can be explained in terms of differences in accessible ionization channels. This study shows that it is essential to include electron correlation effects to obtain an accurate description of the photoelectron emission dynamics from aligned excited states.