ﻻ يوجد ملخص باللغة العربية
We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes $L$ in the range $L=8-64$. We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.
We report results of a Wang-Landau study of the random bond square Ising model with nearest- ($J_{nn}$) and next-nearest-neighbor ($J_{nnn}$) antiferromagnetic interactions. We consider the case $R=J_{nn}/J_{nnn}=1$ for which the competitive nature o
Monte Carlo simulations using the newly proposed Wang-Landau algorithm together with the broad histogram relation are performed to study the antiferromagnetic six-state clock model on the triangular lattice, which is fully frustrated. We confirm the
We report on numerical simulations of the two-dimensional Blume-Capel ferromagnet embedded in the triangular lattice. The model is studied in both its first- and second-order phase transition regime for several values of the crystal field via a sophi
The influence of random site dilution on the critical properties of the two-dimensional Ising model on a square lattice was explored by Monte Carlo simulations with the Wang-Landau sampling. The lattice linear size was $L = 20-120$ and the concentrat
The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disorder