ﻻ يوجد ملخص باللغة العربية
We investigate the unusual magnetic properties of nearly-critical, weakly-itinerant ferromagnets with general formula UTX, where T=Rh,Co and X=Ge,Si. As a unique feature about these systems, we show that changes in the V_{df} hybridization control their proximity to a ferromagnetic instability, and determine the evolution of: the ground state magnetization, M_0, the Curie Temperature, T_C, the density of states at the Fermi level, N(E_F), the T^2 resistivity coefficient, A, and the specific heat coefficient, gamma. The universal aspect of our findings comes from the dependence on only two parameters: the T_d bandwidth, W_d, and the distance between T_d and U_f band centers, C_{T_d}-C_{U_f}.
An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-criti
A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based super
We measure the band structure of nickel along various high-symmetry lines of the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters are obtained from
Metallic quantum criticality is among the central theme in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under calling. In this work, we develop state-of-art large sca