ﻻ يوجد ملخص باللغة العربية
Molecular dynamics simulation is used to study the time-scales involved in the homogeneous melting of a superheated crystal. The interaction model used is an embedded-atom model for Fe developed in previous work, and the melting process is simulated in the microcanonical $(N, V, E)$ ensemble. We study periodically repeated systems containing from 96 to 7776 atoms, and the initial system is always the perfect crystal without free surfaces or other defects. For each chosen total energy $E$ and number of atoms $N$, we perform several hundred statistically independent simulations, with each simulation lasting for between 500 ps and 10 ns, in order to gather statistics for the waiting time $tau_{rm w}$ before melting occurs. We find that the probability distribution of $tau_{rm w}$ is roughly exponential, and that the mean value $<tau_{rm w} >$ depends strongly on the excess of the initial steady temperature of the crystal above the superheating limit identified by other researchers. The mean $<tau_{rm w}>$ also depends strongly on system size in a way that we have quantified. For very small systems of $sim 100$ atoms, we observe a persistent alternation between the solid and liquid states, and we explain why this happens. Our results allow us to draw conclusions about the reliability of the recently proposed Z method for determining the melting properties of simulated materials, and to suggest ways of correcting for the errors of the method.
We extend the early time ordering theory of Cahn, Hilliard, and Cook (CHC) so that our generalized theory applies to solid-to-solid transitions. Our theory involves spatial symmetry breaking (the initial phase contains a symmetry not present in the
Estimating the homogeneous ice nucleation rate from undercooled liquid water is at the same time crucial for understanding many important physical phenomena and technological applications, and challenging for both experiments and theory. From a theor
In this paper we present a study of the early stages of unstable state evolution of systems with spatial symmetry changes. In contrast to the early time linear theory of unstable evolution described by Cahn, Hilliard, and Cook, we develop a generaliz
In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulation
Nearly a quarter of genomic sequences and almost half of all receptors that are likely to be targets for drug design are integral membrane proteins. Understanding the detailed mechanisms of the folding of membrane proteins is a largely unsolved, key