ترغب بنشر مسار تعليمي؟ اضغط هنا

Heat Capacity and Entanglement Measure in a simple two-qubit model

302   0   0.0 ( 0 )
 نشر من قبل Bruno Leggio
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple two-qubit model showing Quantum Phase Transitions as a consequence of ground state level crossings is studied in detail. Using the Concurrence of the system as an entanglement measure and heat capacity as a marker of thermodynamical properties, an analytical expression giving the latter in terms of the former is obtained. A protocol allowing an experimental measure of entanglement is then presented and compared with a related proposal recently reported by Wiesniak, Vedral and Brukner



قيم البحث

اقرأ أيضاً

Bipartite operations underpin both classical communication and entanglement generation. Using a superposition of classical messages, we show that the capacity of a two-qubit operation for error-free entanglement-assisted bidirectional classical commu nication can not exceed twice the entanglement capability. In addition we show that any bipartite two-qubit operation can increase the communication that may be performed using an ensemble by twice the entanglement capability.
311 - B. Leggio , A. Napoli , A. Messina 2011
We show that a two-atoms Bose-Hubbard model exhibits three different phases in the behavior of thermal entanglement in its parameter space. These phases are demonstrated to be traceable back to the existence of quantum phase transitions in the same s ystem. Significant similarities between the behaviors of thermal entanglement and heat capacity in the parameter space are brought to light thus allowing to interpret the occurrence and the meaning of all these three phases.
269 - Guan-Yu Wang , Tao Li , Qing Ai 2018
As the hyperentanglement of photon systems presents lots of unique opportunities in high-capacity quantum networking, the hyperentanglement purification protocol (hyper-EPP) becomes a vital project work and the quality of its accomplishment attracts much attention recently. Here we present the first theoretical scheme of faithful hyper-EPP for nonlocal two-photon systems in two degrees of freedom (DOFs) by constructing several fidelity-robust quantum circuits for hyper-encoded photons. With this faithful hyper-EPP, the bit-flip errors in both the polarization and spatial-mode DOFs can be efficiently corrected and the maximal hyperentanglement in two DOFs could be in principle achieved by performing the hyper-EPP multiple rounds. Moreover, the fidelity-robust quantum circuits, parity-check quantum nondemolition detectors, and SWAP gates make this hyper-EPP works faithfully as the errors coming from practical scattering, in these quantum circuits, are converted into a detectable failure rather than infidelity. Furthermore, this hyper-EPP can be directly extended to purify photon systems entangled in single polarization or spatial-mode DOF and that hyperentangled in polarization and multiple-spatial-mode DOFs.
Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit sys tems, is relevant to optimise the performance of quantum information processes. Here we present an experiment in which the amount of entanglement and discord are measured exploiting different estimators. Among them, some will prove to be optimal, i.e., able to reach the ultimate precision bound allowed by quantum mechanics. These estimation techniques have been tested with a specific family of states ranging from nearly pure Bell states to completely mixed states. This work represents a significant step in the development of reliable metrological tools for quantum technologies.
We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods ha ve increased the observed Bell state fidelity to $F_{rm Bell}=0.86(2)$. Accounting for errors in state preparation and measurement (SPAM) we infer a fidelity of $F_{rm Bell}^{rm -SPAM}=0.88$. Accounting for errors in single qubit operations we infer that a Bell state created with the Rydberg mediated $C_Z$ gate has a fidelity of $F_{rm Bell}^{C_Z}=0.89$. Comparison with a detailed error model based on quantum process matrices indicates that finite atom temperature and laser noise are the dominant error sources contributing to the observed gate infidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا