ﻻ يوجد ملخص باللغة العربية
The initialization of spin polarization in localized hole states is investigated using time-resolved Kerr rotation. We find that the sign of the polarization depends on the magnetic field, and the power and the wavelength of the circularly polarized pump pulse. An analysis of the spin dynamics and the spin-initialization process shows that two mechanisms are responsible for spin polarization with opposite sign: The difference of the g factor between the localized holes and the trions, as well as the capturing process of dark excitons by the localized hole states.
The paper reports optical orientation experiments performed in the narrow GaAs/AlGaAs quantum wells doped with Mn. We experimentally demonstrate a control over the spin polarization by means of the optical orientation via the impurity-to-band excitat
Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/Al
We propose a topological quantum phase transition for quantum states with different Berry phases in hole-doped III-V semiconductor quantum wells with bulk and structure inversion asymmetry. The Berry phase of the occupied Bloch states can be characte
Magnetotransport measurements are presented on paramagnetic (Hg,Mn)Te quantum wells (QWs) with an inverted band structure. Gate-voltage controlled density dependent measurements reveal an unusual behavior in the transition regime from n- to p-type co
By selective doping (Be) of the well and barrier regions of p-GaAs/AlGaAs structures we have realized the situation where the upper Hubbard band (A+ centers) has been occupied by holes in the equilibrium. We studied temperature behavior of the Hall e