ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotope effect in the pseudogap of high-temperature superconducting copper oxides

113   0   0.0 ( 0 )
 نشر من قبل Giorgio Sangiovanni
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study cuprates within Dynamical Cluster Approximation and find the pseudogap displays an isotope effect of the same sign as observed experimentally. Notwithstanding the non-phononic origin of the pseudogap the interplay between electronic repulsion and retarded phonon-mediated attraction gives rise to an isotope dependence of the antinodal spectra. Due to the strong momentum differentiation, such interplay is highly non-trivial and leads to the simultaneous presence of heavier quasiparticles along the nodal direction. We predict an isotope effect in electron-doped materials.


قيم البحث

اقرأ أيضاً

Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtaine d by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowleys legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
A great variety of novel phenomena occur when two-dimensional materials, such as graphene or transition metal dichalcogenides, are assembled into bilayers with a twist between individual layers. As a new application of this paradigm, we consider stru ctures composed of two monolayer-thin $d$-wave superconductors with a twist angle $theta$ that can be realized by mechanically exfoliating van der Waals-bonded high-$T_c$ copper oxide materials, such as Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. On the basis of symmetry arguments and detailed microscopic modelling, we predict that for a range of twist angles in the vicinity of $45^{rm o}$, such bilayers form a robust, fully gapped topological phase with spontaneously broken time-reversal symmetry and protected chiral Majorana edge modes. When $thetaapprox 45^{rm o}$, the topological phase sets in at temperatures close to the bulk $T_csimeq 90$ K, thus furnishing a long sought realization of a true high-temperature topological superconductor.
We present a numerical study of the isotope effect on the angle resolved photoemission spectra (ARPES) in the undoped cuprates. By the systematic-error-free Diagrammatic Monte Carlo method, the Lehman spectral function of a single hole in the ttt-J m odel in the regime of intermediate and strong couplings to optical phonons is calculated for normal and isotope substituted systems. We found that the isotope effect is strongly energy-momentum dependent, and is anomalously enhanced in the intermediate coupling regime while it approaches to that of the localized hole model in the strong coupling regime. We predict the strengths of effect as well as the fine details of the ARPES lineshape change. Implications to the doped case are also discussed.
Present work demonstrates the formation of spin-orbital polarons in electron doped copper oxides, that arise due to doping-induced polarisation of the oxygen orbitals in the CuO$_2$ planes. The concept of such polarons is fundamentally different from previous interpretations. The novel aspect of spin-orbit polarons is best described by electrons becoming self-trapped in one-dimensional channels created by polarisation of the oxygen orbitals. The one-dimensional channels form elongated filaments with two possible orientations, along the diagonals of the elementary CuO$_2$ square plaquette. As the density of doped electrons increases multiple filaments are formed. These may condense into a single percollating filamentary phase. Alternatively, the filaments may cross perpendicularly to create an interconnected conducting quasi-one-dimensional web. At low electron doping the antiferromagnetic (AFM) state and the polaron web coexist. As the doping is increased the web of filaments modifies and transforms the AFM correlations leading to a series of quantum phase transitions - which affect the normal and superconducting state properties.
128 - M. R. Norman 2017
A variety of copper tellurium oxide minerals are known, and many of them exhibit either unusual forms of magnetism, or potentially novel spin liquid behavior. Here, I review a number of the more interesting materials with a focus on their crystalline symmetry and, if known, the nature of their magnetism. Many of these exist (so far) in mineral form only, and most have yet to have their magnetic properties studied. This means a largely unexplored space of materials awaits our exploration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا