ﻻ يوجد ملخص باللغة العربية
We present an empirical study of the intertwined behaviour of members in a financial market. Exploiting a database where the broker that initiates an order book event can be identified, we decompose the correlation and response functions into contributions coming from different market participants and study how their behaviour is interconnected. We find evidence that (1) brokers are very heterogeneous in liquidity provision -- some are consistently liquidity providers while others are consistently liquidity takers. (2) The behaviour of brokers is strongly conditioned on the actions of {it other} brokers. In contrast brokers are only weakly influenced by the impact of their own previous orders. (3) The total impact of market orders is the result of a subtle compensation between the same broker pushing the price in one direction and the liquidity provision of other brokers pushing it in the opposite direction. These results enforce the picture of market dynamics being the result of the competition between heterogeneous participants interacting to form a complicated market ecology.
We consider the problem of designing a derivatives exchange aiming at addressing clients needs in terms of listed options and providing suitable liquidity. We proceed into two steps. First we use a quantization method to select the options that shoul
We present a new method for articulating scale-dependent topological descriptions of the network structure inherent in many complex systems. The technique is based on Partition Decoupled Null Models, a new class of null models that incorporate the in
We introduce a methodology to visualize the limit order book (LOB) using a particle physics lens. Open-source data-analysis tool ROOT, developed by CERN, is used to reconstruct and visualize futures markets. Message-based data is used, rather than sn
The model describing market dynamics after a large financial crash is considered in terms of the stochastic differential equation of Ito. Physically, the model presents an overdamped Brownian particle moving in the nonstationary one-dimensional poten
We studied non-dynamical stochastic resonance for the number of trades in the stock market. The trade arrival rate presents a deterministic pattern that can be modeled by a cosine function perturbed by noise. Due to the nonlinear relationship between