ترغب بنشر مسار تعليمي؟ اضغط هنا

The M81 Group Dwarf Irregular Galaxy DDO 165. II. Connecting Recent Star Formation with ISM Structures and Kinematics

211   0   0.0 ( 0 )
 نشر من قبل John M. Cannon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the stellar populations and complex neutral gas dynamics of the M81 group dIrr galaxy DDO 165 using data from the HST and the VLA. Paper I identified two kinematically distinct HI components, multiple localized high velocity gas features, and eight HI holes and shells (the largest of which spans ~2.2x1.1 kpc). Using the spatial and temporal information from the stellar populations in DDO 165, we compare the patterns of star formation over the past 500 Myr with the HI dynamics. We extract localized star formation histories within 6 of the 8 HI holes identified in Paper I, as well as 23 other regions that sample a range of stellar densities and neutral gas properties. From population synthesis modeling, we derive the energy outputs (from stellar winds and supernovae) of the stellar populations within these regions over the last 100 Myr, and compare with refined estimates of the energies required to create the HI holes. In all cases, we find that feedback is energetically capable of creating the observed structures in the ISM. Numerous regions with significant energy inputs from feedback lack coherent HI structures but show prominent localized high velocity gas features; this feedback signature is a natural product of temporally and spatially distributed star formation. In DDO 165, the extended period of heightened star formation activity (lasting more than 1 Gyr) is energetically capable of creating the observed holes and high velocity gas features in the neutral ISM.



قيم البحث

اقرأ أيضاً

We present observations and analysis of nine dwarf irregular galaxies (dIs) in the M81 Group taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. The nine galaxy sample (the Garland, M81 Dwarf A, DDO 53, Ho IX, Ho I, DDO 165, NGC 2366, Ho II, and IC 2574) spans 6 magnitudes in luminosity, a factor of 1000 in current star formation rate, and 0.5 dex in metallicity. Here we use color-magnitude diagrams of resolved stellar populations to study the star formation histories (SFHs) of these galaxies. We divide the sample into faint and bright galaxies, with a dividing line of M_${B}$ = -15, and then analyze the similarities and differences in the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components. Comparing these parameters as a function of luminosity, we find only minor differences in SF characteristics. We extend our comparison to select dIs in the Local Group (LG), and find only minor differences in SF parameters. The fraction of stars formed per time interval for an average M81 Group and LG dI is consistent with a constant SFH. However, individual galaxies can show significant departures from a constant SFH. Thus, we find this result underlines the importance of stochastic SF in dIs. We also compare possible formation scenarios of the less luminous and candidate tidal dwarfs in the M81 Group. The SFHs and the lack of an overdensity of associated red stars suggest that the Garland and Ho IX are not dIs and are potentially tidal dwarf galaxies. Interestingly, a noteworthy difference between the LG and the M81 Group is the lack of tidal dwarf candidates in the LG.
419 - Sophia Lianou 2012
[abridged] We study the resolved stellar populations and derive the SFH of the SDIG, a gas-rich dwarf galaxy member of the NGC7793 subgroup in the Sculptor group. We construct a CMD using archival HST observations and examine its stellar content. We derive its SFH using a maximum-likelihood fit to the CMD. The CMD shows that SDIG contains stars from 10Myr to several Gyr old, as revealed from the MS, BL, luminous AGB, and RGB stars. The young stars with ages less than ~250Myr show a spatial distribution confined to its central regions, and additionally the young MS stars exhibit an off-center density peak. The intermediate-age and older stars are more spatially extended. SDIG is dominated by intermediate-age stars with an average age of 6.4Gyr. The average metallicity inferred is [M/H]approx -1.5dex. Its SFH is consistent with a constant SFR, except for ages younger than ~200Myr. The lifetime average SFR is 1.3x10^{-3} Mo/yr. More recently than 100Myr, there has been a burst of SF at a rate ~2-3 times higher than the average SFR. The inferred recent SFR from CMD modelling is higher than inferred from the Ha flux of the galaxy; we interpret this to mean that the upper end of the IMF is not being fully sampled due to the low SFR. Additionally, an observed lack of bright blue stars in the CMD could indicate a downturn in SFR on 10^7-yr timescales. A previous SF enhancement appears to have occurred between 600-1100Myr ago, with amplitude similar to the most recent 100Myr. Older bursts of similar peak SFR and duration would not be resolvable with these data. The observed enhancements in SF suggest that SDIG is able to sustain a complex SFH without the effect of interactions with its nearest massive galaxy. Integrating the SFR over the entire history of SDIG yields a total stellar mass 1.77x10^{7}Mo, and a current V-band stellar mass-to-light ratio 3.2Mo/Lo.
We present new, high sensitivity VLA observations of HI in four dwarf galaxies (UGCA 292, GR8, DDO 210, and DDO 216) and we use these data to study interactions between star formation and the interstellar medium. HI velocity dispersions and line shap es in UGCA 292, GR8, and DDO 210 show that these three galaxies contain both warm and cool or cold HI phases. The presence of the cold neutral medium is indicated by a low-dispersion (3--6 km/s) HI component or by the Gauss-Hermite shape parameter h_4 > 0. Contrary to expectations, we find no trend between the incidence of the low-dispersion (colder) phase and the star formation rate in five dwarf galaxies. The colder HI phase may be a necessary ingredient for star formation, but it is clearly not sufficient. However, there is a global trend between the star formation rate of a galaxy and the incidence of asymmetric HI profiles. This trend probably reflects kinetic energy input from young massive stars. Numerical simulations show that the effects of rotational broadening (finite angular resolution) are minimal for these galaxies. Simulations are also used to estimate the errors in the column densities of the high-dispersion and the low-dispersion HI phases.
We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectiv ity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities.
We present the star formation history of the extremely metal-poor dwarf galaxy DDO 68, based on our photometry with the Advanced Camera for Surveys. With a metallicity of only $12+log(O/H)=7.15$ and a very isolated location, DDO 68 is one of the most metal-poor galaxies known. It has been argued that DDO 68 is a young system that started forming stars only $sim 0.15$ Gyr ago. Our data provide a deep and uncontaminated optical color-magnitude diagram that allows us to disprove this hypothesis, since we find a population of at least $sim 1$ Gyr old stars. The star formation activity has been fairly continuous over all the look-back time. The current rate is quite low, and the highest activity occurred between 10 and 100 Myr ago. The average star formation rate over the whole Hubble time is $simeq 0.01$ M$_{odot}$ yr$^{-1}$, corresponding to a total astrated mass of $simeq 1.3 times 10^8$ M$_{odot}$. Our photometry allows us to infer the distance from the tip of the red giant branch, $D = 12.08 pm 0.67$ Mpc; however, to let our synthetic color-magnitude diagram reproduce the observed ones we need a slightly higher distance, $D=12.65$ Mpc, or $(m-M)_0 = 30.51$, still inside the errors of the previous determination, and we adopt the latter. DDO 68 shows a very interesting and complex history, with its quite disturbed shape and a long Tail probably due to tidal interactions. The star formation history of the Tail differs from that of the main body mainly for an enhanced activity at recent epochs, likely triggered by the interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا