ﻻ يوجد ملخص باللغة العربية
We present a fully active-controlled He-Ne ring laser gyroscope, operating in square cavity 1.35 m in side. The apparatus is designed to provide a very low mechanical and thermal drift of the ring cavity geometry and is conceived to be operative in two different orientations of the laser plane, in order to detect rotations around the vertical or the horizontal direction. Since June 2010 the system is active inside the Virgo interferometer central area with the aim of performing high sensitivity measurements of environmental rotational noise. So far, continuous not attempted operation of the gyroscope has been longer than 30 days. The main characteristics of the laser, the active remote-controlled stabilization systems and the data acquisition techniques are presented. An off-line data processing, supported by a simple model of the sensor, is shown to improve the effective long term stability. A rotational sensitivity at the level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the required specification for the improvement of the Virgo suspension control system, is demonstrated for the configuration where the laser plane is horizontal.
GINGERino is a large frame laser gyroscope investigating the ground motion in the most inner part of the underground international laboratory of the Gran Sasso, in central Italy. It consists of a square ring laser with a $3.6$ m side. Several days of
We report on the measurements of tilt noise performed at the Virgo site with a ring laser gyroscope. The apparatus is a He-Ne laser operating in a square cavity mounted on a vertical plane perpendicular to the north-south arm of the inteferometer. We
Interferometric gyroscope systems are being developed with the goal of measuring general-relativistic effects including frame-dragging effects. Such devices are also capable of performing searches for Lorentz violation. We summarize efforts that rela
Large frame ring laser gyroscopes are top sensitivity inertial sensors able to measure absolute angular rotation rate below $rm mathbf{prad/s}$ in few seconds. The development of ring laser based on a simple mechanical structure, usually called heter
We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is ba