ترغب بنشر مسار تعليمي؟ اضغط هنا

The metal contents of two groups of galaxies

49   0   0.0 ( 0 )
 نشر من قبل Yan Grange
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hot gas in clusters and groups of galaxies is continuously being enriched with metals from supernovae and stars. It is well established that the enrichment of the gas with elements from oxygen to iron is mainly caused by supernova explosions. The origins of nitrogen and carbon are still being debated. Possible candidates include massive, metal-rich stars, early generations of massive stars, intermediate or low mass stars and Asymptotic Giant Branch (AGB) stars. In this paper we accurately determine the metal abundances of the gas in the groups of galaxies NGC 5044 and NGC 5813, and discuss the nature of the objects that create these metals. We mainly focus on carbon and nitrogen. We use spatially-resolved high-resolution X-ray spectroscopy from XMM-Newton. For the spectral fitting, multi-temperature hot gas models are used. The abundance ratios of carbon over oxygen and nitrogen over oxygen that we find are high compared to the ratios in the stars in the disk of our Galaxy. The oxygen and nitrogen abundances we derive are similar to what was found in earlier work on other giant ellipticals in comparable environments. We show that the iron abundances in both our sources have a gradient along the cross-dispersion direction of the Reflection Grating Spectrometer (RGS). We conclude that it is unlikely that the creation of nitrogen and carbon takes place in massive stars, which end their lives as core-collapse supernovae, enriching the medium with oxygen because oxygen should then also be enhanced. Therefore we favour low-and intermediate mass stars as sources of these elements. The abundances in the hot gas can best be explained by a 30-40% contribution of type Ia supernovae based on the measured oxygen and iron abundances and under the assumption of a Salpeter Initial Mass Function (IMF).

قيم البحث

اقرأ أيضاً

We present the results of a search for galaxy clusters in Subaru-XMM Deep Field. We reach a depth for a total cluster flux in the 0.5-2 keV band of 2x10^{-15} ergs cm^{-2} s^{-1} over one of the widest XMM-Newton contiguous raster surveys, covering an area of 1.3 square degrees. Cluster candidates are identified through a wavelet detection of extended X-ray emission. The red sequence technique allows us to identify 57 cluster candidates. We report on the progress with the cluster spectroscopic follow-up and derive their properties based on the X-ray luminosity and cluster scaling relations. In addition, 3 sources are identified as X-ray counterparts of radio lobes, and in 3 further sources, X-ray counterpart of radio lobes provides a significant fraction of the total flux of the source. In the area covered by NIR data, our identification success rate achieves 86%. We detect a number of radio galaxies within our groups and for a luminosity-limited sample of radio galaxies we compute halo occupation statistics using a marked cluster mass function. We compare the cluster detection statistics in the SXDF with the predictions of concordance cosmology and current knowledge of the X-ray cluster properties, concluding that a reduction of concordance sigma_8 value by 5% is required in order to match the prediction of the model and the data. This conclusion still needs verification through the completion of cluster follow-up.
Galaxy groups host the majority of matter and more than half of all the galaxies in the Universe. Their hot ($10^7$ K), X-ray emitting intra-group medium (IGrM) reveals emission lines typical of many elements synthesized by stars and supernovae. Beca use their gravitational potentials are shallower than those of rich galaxy clusters, groups are ideal targets for studying, through X-ray observations, feedback effects, which leave important marks on their gas and metal contents. Here, we review the history and present status of the chemical abundances in the IGrM probed by X-ray spectroscopy. We discuss the limitations of our current knowledge, in particular due to uncertainties in the modeling of the Fe-L shell by plasma codes, and coverage of the volume beyond the central region. We further summarize the constraints on the abundance pattern at the group mass scale and the insight it provides to the history of chemical enrichment. Parallel to the observational efforts, we review the progress made by both cosmological hydrodynamical simulations and controlled high-resolution 3D simulations to reproduce the radial distribution of metals in the IGrM, the dependence on system mass from group to cluster scales, and the role of AGN and SN feedback in producing the observed phenomenology. Finally, we highlight future prospects in this field, where progress will be driven both by a much richer sample of X-ray emitting groups identified with eROSITA, and by a revolution in the study of X-ray spectra expected from micro-calorimeters onboard XRISM and ATHENA.
We review the formation and evolution of fossil groups and clusters from both the theoretical and the observational points of view. In the optical band, these systems are dominated by the light of the central galaxy. They were interpreted as old syst ems that had enough time to merge all the M* galaxies within the central one. During the last two decades many observational studies were performed to prove the old and relaxed state of fossil systems. The majority of these studies, that spans a wide range of topics including halos global scaling relations, dynamical substructures, stellar populations, and galaxy luminosity functions, seem to challenge this scenario. The general picture that can be obtained by reviewing all the observational works is that the fossil state could be transitional. Indeed, the formation of the large magnitude gap observed in fossil systems could be related to internal processes rather than an old formation.
We present a search for outlying HII regions in the extended gaseous outskirts of nearby (D < 40 Mpc) galaxies, and subsequent multi-slit spectroscopy used to obtain the HII region nebular oxygen abundances. The galaxies in our sample have extended H I disks and/or interaction-related HI features that extend well beyond their primary stellar components. We report oxygen abundance gradients out to 2.5 times the optical radius for these galaxies which span a range of morphologies and masses. We analyze the underlying stellar and neutral HI gas distributions in the vicinity of the HII regions to understand the physical processes that give rise to the observed metal distributions in galaxies. These measurements, for the first time, convincingly show flat abundance distributions out to large radii in a wide variety of systems, and have broad implications for galaxy chemodynamical evolution.
217 - Mark J. Henriksen 2021
We investigate the origin of intergalactic light (IGL) in close groups of galaxies. IGL is hypothesized to be the byproduct of interaction and merger within compact groups. Comparing the X-ray point source population in our sample of compact groups t hat have intergalactic light with compact groups without IGL, we find marginal evidence for a small increase in ultra-luminous X-ray sources (ULXs). There is also a significant bias towards lower luminosity high mass X-ray binaries (HMXRBs). We interpret this as an indication that groups with visible IGL represent a later evolutionary phase than other compact groups. They have galaxies characterized by quenching of star formation (lower star formation rate (SFR) inferred from lower HMXRB luminosity) after stellar material has been removed from the galaxies into the intergalactic medium, which is the source of the IGL. We conclude that the presence of an increased fraction of ULXs is due to past interaction and mergers within groups that have IGL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا