ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the frequencies of young and of tiny galaxies

45   0   0.0 ( 0 )
 نشر من قبل Gary Mamon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gary A. Mamon




اسأل ChatGPT حول البحث

A simple, 1-equation, galaxy formation model is applied to both the halo merger tree derived from a high-resolution dissipationless cosmological simulation and to 1/4 million Monte-Carlo halo merger trees. The galaxy formation model involves a sharp entropy barrier against the accretion of gas onto low-mass halos, the shock heating of infalling gas far from the central regions of massive halos, and supernova feedback that drives the gas out of shallow halo potential wells. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos, known to be mainly dwarf ellipticals, have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. With the second approach, we qualitatively reproduce the downsizing trend of greater ages at greater masses in stars and predict an upsizing trend of greater ages as one proceeds to masses lower than 10^10 M_Sun. We find that the fraction of galaxies with very young stellar populations (more than half the stellar mass formed within the last 1.5 Gyr) is a function of present-day stellar mass, which peaks at 0.5% at m_crit=10^7.5-9.5 M_Sun, roughly corresponding to the masses of blue compact dwarfs. We predict that the stellar mass function of galaxies should not show a maximum at m_stars > 10^{5.5}, M_Sun, with a power-law stellar mass function with slope approx -1.6 if the IGM temperature in the outskirts of halos before reionization is set by H2 cooling. We speculate on the nature of the lowest mass galaxies.

قيم البحث

اقرأ أيضاً

We aim at quantifying the specific frequency of UCDs in a range of environments and at relating this to the frequency of globular clusters (GCs) and potential progenitor dwarf galaxies. Are the frequencies of UCDs consistent with being the bright tai l of the GC luminosity function (GCLF)? We propose a definition for the specific frequency of UCDs, S_{N,UCD}=N_{UCD}*10^{0.4*(M_{V,host}-M_{V,0})}*c_{w}. The parameter M_{V,0} is the zeropoint of the definition, chosen such that the specific frequency of UCDs is the same as those of globular clusters, S_{N,GC}, if UCDs follow a simple extrapolation of the GCLF. The parameter c_{w} is a correction term for the GCLF width sigma. We apply our definition of S_{N,UCD} to results of spectroscopic UCD searches in the Fornax, Hydra and Centaurus galaxy clusters, two Hickson Compact Groups, and the Local Group. This includes a large database of 180 confirmed UCDs in Fornax. We find that the specific frequencies derived for UCDs match those of GCs very well, to within 10-50%. The ratio {S_{N,UCD}}/{S_{N,GC}} is 1.00 +- 0.44 for the four environments Fornax, Hydra, Centaurus, and Local Group, which have S_{N,GC} values. This good match also holds for individual giant galaxies in Fornax and in the Fornax intracluster-space. The error ranges of the derived UCD specific frequencies in the various environments then imply that not more than 50% of UCDs were formed from dwarf galaxies. We show that such a scenario would require >90% of primordial dwarfs in galaxy cluster centers (<100 kpc) to have been stripped of their stars. We conclude that the number counts of UCDs are fully consistent with them being the bright tail of the GC population. From a statistical point of view there is no need to invoke an additional formation channel.
According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxie s. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is $sim!2$ times larger than predicted by the mock data. For TGSS, the dipole is almost $sim! 5$ times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.
While the Low Frequency Array (LOFAR) is still in its commissioning phase, early science results are starting to emerge. Two nearby galaxies, M51 and NGC4631, have been observed as part of the Magnetism Key Science Projects (MKSP) effort to increase our understanding of the nature of weak magnetic fields in galaxies. LOFAR and the complexity of its calibration as well as the aims and goals of the MKSP are presented.
In an effort to understand the correlation between X-ray emission and present star formation rate (SFR), we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively starforming HII galaxies. The obtained X-ray luminosities are compared to other well known tracers of star formation activity such as the far infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Ha or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova remnants and high mass X-ray binaries (HMXB) which originate the radio and hard X-ray fluxes respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Ha luminosities) we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 10^8 years. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as supernova remnants, have a formation time delay of a few mega years after the starforming burst.
We study how the frequencies and damping times of oscillations of a newly born, hot proto-neutron star depend on the physical quantities which characterize the star quasi-stationary evolution which follows the bounce. Stellar configurations are model ed using a microscopic equation of state obtained within the Brueckner-Hartree-Fock, nuclear many-body approach, extended to the finite-temperature regime. We discuss the mode frequency behaviour as function of the lepton composition, and of the entropy gradients which prevail in the interior of the star. We find that, in the very early stages, gravitational wave emission efficiently competes with neutrino processes in dissipating the star mechanical energy residual of the gravitational collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا