ترغب بنشر مسار تعليمي؟ اضغط هنا

YSOVAR: the first sensitive, wide-area, mid-IR photometric monitoring of the ONC

364   0   0.0 ( 0 )
 نشر من قبل Maria Morales-Calderon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present initial results from time series imaging at infrared wavelengths of 0.9 sq. degrees in the Orion Nebula Cluster (ONC). During Fall 2009 we obtained 81 epochs of Spitzer 3.6 and 4.5 micron data over 40 consecutive days. We extracted light curves with ~3% photometric accuracy for ~2000 ONC members ranging from several solar masses down to well below the hydrogen burning mass limit. For many of the stars, we also have time-series photometry obtained at optical (Ic) and/or near-infrared (JKs) wavelengths. Our data set can be mined to determine stellar rotation periods, identify new pre-main-sequence (PMS) eclipsing binaries, search for new substellar Orion members, and help better determine the frequency of circumstellar disks as a function of stellar mass in the ONC. Our primary focus is the unique ability of 3.6 & 4.5 micron variability information to improve our understanding of inner disk processes and structure in the Class I and II young stellar objects (YSOs). In this paper, we provide a brief overview of the YSOVAR Orion data obtained in Fall 2009, and we highlight our light curves for AA-Tau analogs - YSOs with narrow dips in flux, most probably due to disk density structures passing through our line of sight. Detailed follow-up observations are needed in order to better quantify the nature of the obscuring bodies and what this implies for the structure of the inner disks of YSOs.

قيم البحث

اقرأ أيضاً

The emission from young stellar objects (YSOs) in the mid-IR is dominated by the inner rim of their circumstellar disks. We present an IR-monitoring survey of about 800 objects in the direction of the Lynds 1688 (L1688) star forming region over four visibility windows spanning 1.6 years using the emph{Spitzer} space telescope in its warm mission phase. Among all lightcurves, 57 sources are cluster members identified based on their spectral-energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the lightcurves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 years. Non-periodic lightcurves often still show a preferred timescale of variability which is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption towards the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.
We present the time-dependent properties of a poorly known OH/IR star $-$ IRAS 18278+0931 (hereafter, IRAS 18+09) towards the Ophiuchus constellation. We have carried out long-term optical/near-infrared (NIR) photometric and spectroscopic observation s to study the object. From optical $R$- and $I$-band light curves, the period of IRAS 18+09 is estimated to be 575 $pm$ 30 days and the variability amplitudes range from $Delta$R $sim$ 4.0 mag to $Delta$I $sim$ 3.5 mag. From the standard Period-Luminosity (PL) relations, the distance ($D$) to the object, 4.0 $pm$ 1.3 kpc, is estimated. Applying this distance in the radiative transfer model, the spectral energy distribution (SED) are constructed from multi-wavelength photometric and IRAS-LRS spectral data which provides the luminosity, optical depth, and gas mass-loss rate (MLR) of the object to be 9600 $pm$ 500 $L_{odot}$, 9.1 $pm$ 0.6 at 0.55 $mu$m and 1.0$times$10$^{-6}$ M$_odot$ yr$^{-1}$, respectively. The current mass of the object infers in the range 1.0 $-$ 1.5 $M_odot$ assuming solar metallicity. Notably, the temporal variation of atomic and molecular features (e.g., TiO, Na I, Ca I, CO, H$_2$O) over the pulsation cycle of the OH/IR star illustrates the sensitivity of the spectral features to the dynamical atmosphere as observed in pulsating AGB stars.
We present Herschel/HIFI observations (WISH KP) of 14 water lines in a small sample of galactic massive protostellar objects: NGC6334I(N), DR21(OH), IRAS16272-4837, and IRAS05358+3543. We analyze the gas dynamics from the line profiles. Through model ing of the observations using RATRAN, we estimate outflow, infall, turbulent velocities, molecular abundances, and investigate any correlation with the evolutionary status of each source. The molecular line profiles exhibit a broad component coming from the shocks along the cavity walls associated with the protostars, and an infalling (or expansion for IRAS05358+3543) and passively heated envelope component, with highly supersonic turbulence likely increasing with the distance from the center. Accretion rates between 6.3 10^{-5} and 5.6 10^{-4} msun yr^{-1} are derived from the infall observed in three of our sources. The outer water abundance is estimated to be at the typical value of a few 10^{-8} while the inner abundance varies from 1.7 10^{-6} to 1.4 10^{-4} with respect to H2 depending on the source. We confirm that regions of massive star formation are highly turbulent and that the turbulence likely increases in the envelope with the distance to the star. The inner abundances are lower than the expected 10^{-4} perhaps because our observed lines do not probe deep enough into the inner envelope, or because photodissociation through protostellar UV photons is more efficient than expected. We show that the higher the infall/expansion velocity in the protostellar envelope, the higher is the inner abundance, maybe indicating that larger infall/expansion velocities generate shocks that will sputter water from the ice mantles of dust grains in the inner region. High-velocity water must be formed in the gas-phase from shocked material.
As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5 um using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10x~20arcmin area ce ntered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded SEDs (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2 mag; a more typical amplitude is 0.1-0.15 mag. The largest color change is >0.2 mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be dippers, where texture in the disk occults the central star, and 11 likely to be bursters, where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).
70 - Emily M. Levesque 2018
The Near Infrared Camera (NIRCam) on the James Webb Space Telescope (JWST) will be an incredibly powerful instrument for studying red supergiants (RSGs). The high luminosities and red peak wavelengths of these stars make them ideal targets for JWST/N IRCam. With effective photometric diagnostics in place, imaging RSG populations in multiple filters will make it possible to determine these stars physical properties and, in cases where JWST pre-explosion imaging is available, to identify RSG supernova progenitors. This paper uses observed and model spectra of Galactic RSGs to simulate JWST/NIRCam near-IR photometry and colors, quantify and test potential diagnostics of effective temperature and bolometric magnitude, and present photometric techniques for separating background RSG and foreground dwarf populations. While results are presented for the full suite of near-IR filters, this work shows that (F070W-F200W) is the JWST/NIRCam color index most sensitive to effective temperature, F090W is the best band for determining bolometric magnitude, and the (F070W-F090W) vs. (F090W-F200W) color-color diagram can be used to separate foreground dwarf and background RSG samples. The combination of these three filters is recommended as the best suite of photometric observations to use when studying RSGs with JWST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا